IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v31y2006i14p2677-2698.html
   My bibliography  Save this article

Demand side management in Nepal

Author

Listed:
  • Yang, Ming

Abstract

The objective of this paper is to identify the most cost-effective areas for Demand Side Management (DSM) in Nepal. On-site interviews were undertaken with power utilities (the Nepal Electricity Authority or NEA and its sub-companies) and various electricity end-users in Nepal to collect data, as well as walk-through auditing at the end-users’ premises. International standard financial and economic analysis methodologies were used to project cost-effectiveness assessments. This paper concludes that the majority of the potential DSM technologies in Nepal are financially viable and that the most cost-effective areas for DSM technologies in Nepal include power factor (cosϕ) correction; energy-efficient lighting in the residential and commercial sectors; and the installation of intelligent motor controllers for industrial induction motors.

Suggested Citation

  • Yang, Ming, 2006. "Demand side management in Nepal," Energy, Elsevier, vol. 31(14), pages 2677-2698.
  • Handle: RePEc:eee:energy:v:31:y:2006:i:14:p:2677-2698
    DOI: 10.1016/j.energy.2005.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206000077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2005.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Ming & Dixon, Robert K., 2012. "Investing in efficient industrial boiler systems in China and Vietnam," Energy Policy, Elsevier, vol. 40(C), pages 432-437.
    2. Saidur, R., 2010. "A review on electrical motors energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 877-898, April.
    3. Dzene, Ilze & Rošā, Marika & Blumberga, Dagnija, 2011. "How to select appropriate measures for reductions in negative environmental impact? Testing a screening method on a regional energy system," Energy, Elsevier, vol. 36(4), pages 1878-1883.
    4. Mohammad Dehghani & Mohammad Mardaneh & Om P. Malik & Josep M. Guerrero & Carlos Sotelo & David Sotelo & Morteza Nazari-Heris & Kamal Al-Haddad & Ricardo A. Ramirez-Mendoza, 2020. "Genetic Algorithm for Energy Commitment in a Power System Supplied by Multiple Energy Carriers," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    5. Trifunovic, J. & Mikulovic, J. & Djurisic, Z. & Djuric, M. & Kostic, M., 2009. "Reductions in electricity consumption and power demand in case of the mass use of compact fluorescent lamps," Energy, Elsevier, vol. 34(9), pages 1355-1363.
    6. Saidur, R. & Mekhilef, S., 2010. "Energy use, energy savings and emission analysis in the Malaysian rubber producing industries," Applied Energy, Elsevier, vol. 87(8), pages 2746-2758, August.
    7. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    8. Saidur, R. & Rahim, N.A. & Ping, H.W. & Jahirul, M.I. & Mekhilef, S. & Masjuki, H.H., 2009. "Energy and emission analysis for industrial motors in Malaysia," Energy Policy, Elsevier, vol. 37(9), pages 3650-3658, September.
    9. Malik, Arif S., 2007. "Impact on power planning due to demand-side management (DSM) in commercial and government sectors with rebound effect—A case study of central grid of Oman," Energy, Elsevier, vol. 32(11), pages 2157-2166.
    10. Pelzer, R. & Mathews, E.H. & le Roux, D.F. & Kleingeld, M., 2008. "A new approach to ensure successful implementation of sustainable demand side management (DSM) in South African mines," Energy, Elsevier, vol. 33(8), pages 1254-1263.
    11. Sara Tavakoli & Kaveh Khalilpour, 2021. "A Practical Load Disaggregation Approach for Monitoring Industrial Users Demand with Limited Data Availability," Energies, MDPI, vol. 14(16), pages 1-27, August.
    12. Sovacool, Benjamin K. & Dhakal, Saroj & Gippner, Olivia & Bambawale, Malavika Jain, 2011. "Halting hydro: A review of the socio-technical barriers to hydroelectric power plants in Nepal," Energy, Elsevier, vol. 36(5), pages 3468-3476.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:31:y:2006:i:14:p:2677-2698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.