IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223025197.html
   My bibliography  Save this article

The properties of sustainable aviation fuel I: Spray characteristics

Author

Listed:
  • Lin, Jhe-Kai
  • Nurazaq, Warit Abi
  • Wang, Wei-Cheng

Abstract

This study measures the spray penetration, spray angle and spray volume of sustainable aviation fuel (SAF) experimentally using an optical constant volume combustion chamber under different ambient temperatures, injection pressures, and ambient pressures. The results show that when the ambient temperature increases from 200 °C to 300 °C, the spray penetration decreases by ∽10%–20%, while it further decreases by ∽40%–50% when the temperature increases from 300 °C to 400 °C. Furthermore, the spray penetration of SAF will reach its stable stage fastest at 400 °C. As the ambient temperature increases, the spray angle and spray volume of SAF decreased by 10%–20% and 50%, respectively. In addition, the spray penetration and spray volume of SAF increased by 10% and 20%, respectively, with an increase in injection pressure at 200 °C. An increase in injection pressure at 400 °C causes the decrease in spray penetration and spray volume of SAF by 20%, and both of them showed increasing and decreasing trends at the stable stage. Thus, increase in injection pressure has little effect on the spray angle. Moreover, the spray penetration and spray volume of SAF showed a decreasing trend on increasing ambient pressure, but significant effect was observed at a high temperature of 400 °C than at a low temperature of 200 °C. Conversely, the spray angle of SAF showed an increasing trend with an increase in ambient pressure, but this influence was larger at a low temperature of 200 °C than that at a high temperature of 400 °C.

Suggested Citation

  • Lin, Jhe-Kai & Nurazaq, Warit Abi & Wang, Wei-Cheng, 2023. "The properties of sustainable aviation fuel I: Spray characteristics," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025197
    DOI: 10.1016/j.energy.2023.129125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223025197
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gutiérrez-Antonio, C. & Gómez-Castro, F.I. & de Lira-Flores, J.A. & Hernández, S., 2017. "A review on the production processes of renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 709-729.
    2. Sun, Yubiao & Alkhedhair, Abdullah M. & Guan, Zhiqiang & Hooman, Kamel, 2018. "Numerical and experimental study on the spray characteristics of full-cone pressure swirl atomizers," Energy, Elsevier, vol. 160(C), pages 678-692.
    3. Chen, Yu-Kai & Hsieh, Chung-Hung & Wang, Wei-Cheng, 2020. "The production of renewable aviation fuel from waste cooking oil. Part II: Catalytic hydro-cracking/isomerization of hydro-processed alkanes into jet fuel range products," Renewable Energy, Elsevier, vol. 157(C), pages 731-740.
    4. Pachiannan, Tamilselvan & Zhong, Wenjun & Xuan, Tiemin & Li, Bei & He, Zhixia & Wang, Qian & Yu, Xiong, 2019. "Simultaneous study on spray liquid length, ignition and combustion characteristics of diesel and hydrogenated catalytic biodiesel in a constant volume combustion chamber," Renewable Energy, Elsevier, vol. 140(C), pages 761-771.
    5. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Wu, Yang & Zhang, Lu & Liu, Fushui, 2019. "Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "Direct conversion of glyceride-based oil into renewable jet fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    7. Zhang, Qiankun & Xia, Jin & Wang, Jianping & He, Zhuoyao & Zhao, Wenbin & Qian, Yong & Zheng, Liang & Liu, Rui & Lu, Xingcai, 2022. "Experimental study on ignition and combustion characteristics of biodiesel-butanol blends at different injection pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Miaojia & Zhang, Xinghua & Chen, Yubao & Zhang, Qi & Chen, Lungang & Liu, Jianguo & Ma, Longlong, 2023. "Hydroprocessing of lipids: An effective production process for sustainable aviation fuel," Energy, Elsevier, vol. 283(C).
    2. Djati Wibowo Djamari & Muhammad Idris & Permana Andi Paristiawan & Muhammad Mujtaba Abbas & Olusegun David Samuel & Manzoore Elahi M. Soudagar & Safarudin Gazali Herawan & Davannendran Chandran & Abdu, 2022. "Diesel Spray: Development of Spray in Diesel Engine," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    3. Główka, Marek & Wójcik, Jan & Boberski, Przemysław & Białecki, Tomasz & Gawron, Bartosz & Skolniak, Marta & Suchocki, Tomasz, 2024. "Sustainable aviation fuel – Comprehensive study on highly selective isomerization route towards HEFA based bioadditives," Renewable Energy, Elsevier, vol. 220(C).
    4. Zhou, Xin & Yan, Hao & Sun, Zongzhuang & Feng, Xiang & Zhao, Hui & Liu, Yibin & Chen, Xiaobo & Yang, Chaohe, 2021. "Opportunities for utilizing waste cooking oil in crude to petrochemical process: Novel process design, optimal strategy, techno-economic analysis and life cycle society-environment assessment," Energy, Elsevier, vol. 237(C).
    5. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Verma, Vikas & Mishra, Ankit & Anand, Mohit & Farooqui, Saleem Akhtar & Sinha, Anil Kumar, 2022. "Catalytic hydrocracking of inedible palm stearin for the production of drop-in aviation fuel and comparison with other inedible oils," Renewable Energy, Elsevier, vol. 199(C), pages 1440-1450.
    7. Burov, Nikita O. & Savelenko, Vsevolod D. & Ershov, Mikhail A. & Vikhritskaya, Anastasia O. & Tikhomirova, Ekaterina O. & Klimov, Nikita A. & Kapustin, Vladimir M. & Chernysheva, Elena A. & Sereda, Al, 2023. "Knowledge contribution from science to technology in the conceptualization model to produce sustainable aviation fuels from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 215(C).
    8. Li, Menghan & Wei, Zhangning & Liu, Xiaori & Wang, Xiaoyan & Zhang, Qiang & Li, Zhenguo, 2021. "A numerical investigation on the effects of gaseous fuel composition in a pilot ignited direct injection natural gas engine," Energy, Elsevier, vol. 217(C).
    9. Mei Yin Ong & Saifuddin Nomanbhay & Fitranto Kusumo & Raja Mohamad Hafriz Raja Shahruzzaman & Abd Halim Shamsuddin, 2021. "Modeling and Optimization of Microwave-Based Bio-Jet Fuel from Coconut Oil: Investigation of Response Surface Methodology (RSM) and Artificial Neural Network Methodology (ANN)," Energies, MDPI, vol. 14(2), pages 1-17, January.
    10. Lee, Chia-fon & Pang, Yuxin & Wu, Han & Nithyanandan, Karthik & Liu, Fushui, 2020. "An optical investigation of substitution rates on natural gas/diesel dual-fuel combustion in a diesel engine," Applied Energy, Elsevier, vol. 261(C).
    11. Fekadu Mosisa Wako & Gianmaria Pio & Ernesto Salzano, 2020. "The Effect of Hydrogen Addition on Low-Temperature Combustion of Light Hydrocarbons and Alcohols," Energies, MDPI, vol. 13(15), pages 1-14, July.
    12. Yuxuan Zhao & Enhua Wang & Zhicheng Shi, 2022. "Numerical Investigation of the Ignition Delay Time of Kerosene Premixed Combustion in an SI Engine," Energies, MDPI, vol. 15(5), pages 1-15, February.
    13. Bai, Yuanqi & Wang, Ying & Wang, Xiaochen, 2021. "Development of a skeletal mechanism for four-component biodiesel surrogate fuel with PAH," Renewable Energy, Elsevier, vol. 171(C), pages 266-274.
    14. Singh, Omvir & Agrawal, Ankit & Dhiman, Neha & Vempatapu, Bhanu Prasad & Chiang, Ken & Tripathi, Shailendra & Sarkar, Bipul, 2021. "Production of renewable aromatics from jatropha oil over multifunctional ZnCo/ZSM-5 catalysts," Renewable Energy, Elsevier, vol. 179(C), pages 2124-2135.
    15. Xu, Min & Jiang, Peng & Zhong, Wenjun & Yan, Feibin & Liu, Xu & Wang, Qian, 2023. "Experimental investigation combined with steady-state and transient-state tests on soot characteristics of hydrogenated catalytic biodiesel/n-butanol blends," Energy, Elsevier, vol. 282(C).
    16. Praepilas Dujjanutat & Arthit Neramittagapong & Pakawadee Kaewkannetra, 2019. "Optimization of Bio-Hydrogenated Kerosene from Refined Palm Oil by Catalytic Hydrocracking," Energies, MDPI, vol. 12(16), pages 1-15, August.
    17. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    18. Zhong, Shenghui & Zhang, Fan & Jangi, Mehdi & Bai, Xue-Song & Yao, Mingfa & Peng, Zhijun, 2020. "Structure and propagation of n-heptane/air premixed flame in low temperature ignition regime," Applied Energy, Elsevier, vol. 275(C).
    19. Shrasti Vasistha & Anwesha Khanra & Monika Prakash Rai & Shakeel Ahmad Khan & Zengling Ma & Heli Siti Halimatul Munawaroh & Doris Ying Ying Tang & Pau Loke Show, 2023. "Exploring the Pivotal Significance of Microalgae-Derived Sustainable Lipid Production: A Critical Review of Green Bioenergy Development," Energies, MDPI, vol. 16(1), pages 1, January.
    20. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2021. "Techno-economic analysis of hydroprocessed renewable jet fuel production from pennycress oilseed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.