IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223022399.html
   My bibliography  Save this article

Modeling debrining of an energy storage salt cavern considering the effects of temperature

Author

Listed:
  • Xie, Dongzhou
  • Wang, Tongtao
  • Li, Long
  • Guo, Kai
  • Ben, Jianhua
  • Wang, Duocai
  • Chai, Guoxing

Abstract

Debrining is one of the most important steps in the construction of a salt cavern. The debrining inner tubing may be blocked by salt deposits because the brine temperature drops during debrining. However, most previous studies have ignored the effects of salt deposits on debrining. In this paper, a novel debrining model of a gas storage salt cavern to predict the debrining parameters and salt deposit growth based on the crystallization kinetics and heat transfer principle is built. A finite difference program is developed to solve this model. The model is validated by debrining monitoring data. The effects of debrining rate on debrining parameters are analyzed. The results show that the brine and gas temperature increase gradually with debrining time and ultimately approaches a constant value. If the debrining rate is increased from 20 to 80 m3/h, the salt deposits growth rate at the wellhead is decreased by 53.48%, and the total debrining time can be reduced by 77.3%, and the backflushing frequency can be decreased from 1.17 to 3.29 days/time. It is suggested that the debrining rate of Jintan UGS salt cavern increased to more than 80 m3/h and the backflushing frequency decreased to 3.29 days/time.

Suggested Citation

  • Xie, Dongzhou & Wang, Tongtao & Li, Long & Guo, Kai & Ben, Jianhua & Wang, Duocai & Chai, Guoxing, 2023. "Modeling debrining of an energy storage salt cavern considering the effects of temperature," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022399
    DOI: 10.1016/j.energy.2023.128845
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223022399
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Tongtao & Yang, Chunhe & Wang, Huimeng & Ding, Shuanglong & Daemen, J.J.K., 2018. "Debrining prediction of a salt cavern used for compressed air energy storage," Energy, Elsevier, vol. 147(C), pages 464-476.
    2. Al-Khori, Khalid & Bicer, Yusuf & Koç, Muammer, 2021. "Comparative techno-economic assessment of integrated PV-SOFC and PV-Battery hybrid system for natural gas processing plants," Energy, Elsevier, vol. 222(C).
    3. Liao, Youqiang & Zheng, Junjie & Wang, Zhiyuan & Sun, Baojiang & Sun, Xiaohui & Linga, Praveen, 2022. "Modeling and characterizing the thermal and kinetic behavior of methane hydrate dissociation in sandy porous media," Applied Energy, Elsevier, vol. 312(C).
    4. Mahdi Ghaemi Asl & Sajad Rajabi & Muhammad Irfan & Reza Ranjbaran & Mohammad Ghasemi Doudkanlou, 2022. "COVID-19 restrictions and greenhouse gas savings in selected Islamic and MENA countries: An environmental input–output approach for climate policies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13937-13989, December.
    5. Martínez Sánchez, Ana M. & Saldarriaga Cortés, Carlos A. & Salazar, Harold, 2021. "An optimal coordination of seasonal energy storages: A holistic approach to ensure energy adequacy and cost efficiency," Applied Energy, Elsevier, vol. 290(C).
    6. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    7. Mikolajková, Markéta & Saxén, Henrik & Pettersson, Frank, 2018. "Linearization of an MINLP model and its application to gas distribution optimization," Energy, Elsevier, vol. 146(C), pages 156-168.
    8. Wang, Tongtao & Ao, Lide & Wang, Bin & Ding, Shuanglong & Wang, Kangyue & Yao, Fulai & Daemen, J.J.K., 2022. "Tightness of an underground energy storage salt cavern with adverse geological conditions," Energy, Elsevier, vol. 238(PC).
    9. Zhou, Huairong & Meng, Wenliang & Wang, Dongliang & Li, Guixian & Li, Hongwei & Liu, Zhiqiang & Yang, Sheng, 2021. "A novel coal chemical looping gasification scheme for synthetic natural gas with low energy consumption for CO2 capture: Modelling, parameters optimization, and performance analysis," Energy, Elsevier, vol. 225(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiong & Liu, Wei & Jiang, Deyi & Qiao, Weibiao & Liu, Enbin & Zhang, Nan & Fan, Jinyang, 2021. "Investigation on the influences of interlayer contents on stability and usability of energy storage caverns in bedded rock salt," Energy, Elsevier, vol. 231(C).
    2. Jingcui Li & Jifang Wan & Hangming Liu & Maria Jose Jurado & Yuxian He & Guangjie Yuan & Yan Xia, 2022. "Stability Analysis of a Typical Salt Cavern Gas Storage in the Jintan Area of China," Energies, MDPI, vol. 15(11), pages 1-15, June.
    3. Zhang, Xiong & Liu, Wei & Chen, Jie & Jiang, Deyi & Fan, Jinyang & Daemen, J.J.K. & Qiao, Weibiao, 2022. "Large-scale CO2 disposal/storage in bedded rock salt caverns of China: An evaluation of safety and suitability," Energy, Elsevier, vol. 249(C).
    4. Bohang Liu & Lei Wang & Yintong Guo & Jing Li & Hanzhi Yang, 2022. "Experimental Investigation on the Evolution of Tensile Mechanical Behavior of Cement Stone Considering the Variation of Burial Depth," Energies, MDPI, vol. 15(19), pages 1-16, October.
    5. Chu, Genyun & Fan, Yingjie & Zhang, Dawei & Gao, Minglin & Yu, Jianhua & Xie, Jianhui & Yang, Qingchun, 2022. "A highly efficient and environmentally friendly approach for in-situ utilization of CO2 from coal to ethylene glycol plant," Energy, Elsevier, vol. 256(C).
    6. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Lei Wang & Bohang Liu & Hanzhi Yang & Yintong Guo & Jing Li & Hejuan Liu, 2022. "Experimental Study on the Compressive and Shear Mechanical Properties of Cement–Formation Interface Considering Surface Roughness and Drilling Mud Contamination," Energies, MDPI, vol. 15(17), pages 1-17, September.
    8. Wu, Wei & Taipabu, Muhammad Ikhsan & Chang, Wei-Chen & Viswanathan, Karthickeyan & Xie, Yi-Lin & Kuo, Po-Chih, 2022. "Economic dispatch of torrefied biomass polygeneration systems considering power/SNG grid demands," Renewable Energy, Elsevier, vol. 196(C), pages 707-719.
    9. Chadly, Assia & Azar, Elie & Maalouf, Maher & Mayyas, Ahmad, 2022. "Techno-economic analysis of energy storage systems using reversible fuel cells and rechargeable batteries in green buildings," Energy, Elsevier, vol. 247(C).
    10. Chen, Zhang & Yiliang, Xie & Hongxia, Zhang & Yujie, Gu & Xiongwen, Zhang, 2023. "Optimal design and performance assessment for a solar powered electricity, heating and hydrogen integrated energy system," Energy, Elsevier, vol. 262(PA).
    11. Li, Hang & Ma, Hongling & Liu, Jiang & Zhu, Shijie & Zhao, Kai & Zheng, Zhuyan & Zeng, Zhen & Yang, Chunhe, 2023. "Large-scale CAES in bedded rock salt: A case study in Jiangsu Province, China," Energy, Elsevier, vol. 281(C).
    12. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Li, Jinlong & Zhang, Ning & Xu, Wenjie & Naumov, Dmitri & Fischer, Thomas & Chen, Yunmin & Zhuang, Duanyang & Nagel, Thomas, 2022. "The influence of cavern length on deformation and barrier integrity around horizontal energy storage salt caverns," Energy, Elsevier, vol. 244(PB).
    14. Kakodkar, R. & He, G. & Demirhan, C.D. & Arbabzadeh, M. & Baratsas, S.G. & Avraamidou, S. & Mallapragada, D. & Miller, I. & Allen, R.C. & Gençer, E. & Pistikopoulos, E.N., 2022. "A review of analytical and optimization methodologies for transitions in multi-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Li, Jinlong & Shi, Xilin & Zhang, Shuai, 2020. "Construction modeling and parameter optimization of multi-step horizontal energy storage salt caverns," Energy, Elsevier, vol. 203(C).
    16. Xu, Yuhao & Luo, Xiaobing & Tu, Zhengkai & Siew Hwa Chan,, 2022. "Multi-criteria assessment of solid oxide fuel cell–combined cooling, heating, and power system model for residential application," Energy, Elsevier, vol. 259(C).
    17. Lankof, Leszek & Urbańczyk, Kazimierz & Tarkowski, Radosław, 2022. "Assessment of the potential for underground hydrogen storage in salt domes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Chen, Wei & Liu, Jie & Peng, Wenqing & Zhao, Yanlin & Luo, Shilin & Wan, Wen & Wu, Qiuhong & Wang, Yuanzeng & Li, Shengnan & Tang, Xiaoyu & Zeng, Xiantao & Wu, Xiaofan & Zhou, Yu & Xie, Senlin, 2023. "Aging deterioration of mechanical properties on coal-rock combinations considering hydro-chemical corrosion," Energy, Elsevier, vol. 282(C).
    19. Becerra-Fernandez, Mauricio & Cosenz, Federico & Dyner, Isaac, 2020. "Modeling the natural gas supply chain for sustainable growth policy," Energy, Elsevier, vol. 205(C).
    20. Aleksandra Małachowska & Natalia Łukasik & Joanna Mioduska & Jacek Gębicki, 2022. "Hydrogen Storage in Geological Formations—The Potential of Salt Caverns," Energies, MDPI, vol. 15(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.