IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v277y2023ics0360544223010290.html
   My bibliography  Save this article

The use of plasma technologies to optimize fuel combustion processes and reduce emissions of harmful substances

Author

Listed:
  • Bolegenova, Saltanat
  • Askarova, Аliya
  • Georgiev, Aleksandar
  • Nugymanova, Aizhan
  • Maximov, Valeriy
  • Bolegenova, Symbat
  • Mamedov, Bolat

Abstract

The latest information technologies and 3D computer modeling methods were used to introduce new technology of plasma fuel ignition and stabilization of combustion processes. Numerical studies of the physicochemical processes occurring during the combustion of pulverized coal fuel flows in areas of real geometry (combustion chambers of thermal power plants) have been carried out. The main regularities of the influence of thermochemical plasma activation of pulverized coal flows on the process of fuel combustion in the combustion chambers of Kazakhstan boilers have been established. The conducted studies of the systems of thermochemical plasma activation of pulverized coal flows have shown the possibility and efficiency of their application at real thermal power facilities. This makes possible to solve both: economic problems (reducing the consumption of fuel oil) and environmental problems (reducing harmful dust and gas emissions from the combustion of low-grade coal fuels from Kazakhstan deposits). This will optimize the processes that occur during the combustion of energy fuel, reduce emissions of harmful substances into the atmosphere (carbon oxides, nitrogen oxides), create and implement in the future a new way to produce "clean" energy.

Suggested Citation

  • Bolegenova, Saltanat & Askarova, Аliya & Georgiev, Aleksandar & Nugymanova, Aizhan & Maximov, Valeriy & Bolegenova, Symbat & Mamedov, Bolat, 2023. "The use of plasma technologies to optimize fuel combustion processes and reduce emissions of harmful substances," Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223010290
    DOI: 10.1016/j.energy.2023.127635
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223010290
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aliya Askarova & Montserrat Zamorano & Jaime Martín-Pascual & Aizhan Nugymanova & Saltanat Bolegenova, 2022. "A Review of the Energy Potential of Residual Biomass for Coincineration in Kazakhstan," Energies, MDPI, vol. 15(17), pages 1-15, September.
    2. Zhao, Zhenghui & Wang, Ruikun & Ge, Lichao & Wu, Junhong & Yin, Qianqian & Wang, Chunbo, 2019. "Energy utilization of coal-coking wastes via coal slurry preparation: The characteristics of slurrying, combustion, and pollutant emission," Energy, Elsevier, vol. 168(C), pages 609-618.
    3. Aliya Askarova & Saltanat Bolegenova & Valeriy Maximov & Symbat Bolegenova & Nariman Askarov & Aizhan Nugymanova, 2021. "Computer Technologies of 3D Modeling by Combustion Processes to Create Effective Methods of Burning Solid Fuel and Reduce Harmful Dust and Gas Emissions into the Atmosphere," Energies, MDPI, vol. 14(5), pages 1-22, February.
    4. Reinhard Leithner, 2007. "Combined cycles for CO 2 -capture with high efficiency," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 5(3), pages 340-354.
    5. Qian, Yejian & Gong, Zhen & Shao, Xiaowei & Tao, Changfa & Zhuang, Yuan, 2019. "Numerical study of the effect of combustion chamber structure on scavenging process in a boosted GDI engine," Energy, Elsevier, vol. 168(C), pages 9-29.
    6. Pan, Peiyuan & Peng, Weike & Li, Jiarui & Chen, Heng & Xu, Gang & Liu, Tong, 2022. "Design and evaluation of a conceptual waste-to-energy approach integrating plasma waste gasification with coal-fired power generation," Energy, Elsevier, vol. 238(PC).
    7. Ibrahimoglu, Beycan & Yilmazoglu, M. Zeki & Cucen, Ahmet, 2016. "Numerical modeling of repowering of a thermal power plant boiler using plasma combustion systems," Energy, Elsevier, vol. 103(C), pages 38-48.
    8. Zhang, Teng & Zhang, Jingfeng & Yu, Yunsong & Zhang, Zaoxiao & Wang, Geoff G.X., 2023. "Up-rotating plasma gasifier for waste treatment to produce syngas and intensified by carbon dioxide," Energy, Elsevier, vol. 270(C).
    9. Dong, Ming & Cui, Jinglong & Jia, Ming & Shang, Yan & Li, Sufen, 2020. "Large eddy simulation of plasma-assisted ignition and combustion in a coaxial jet combustor," Energy, Elsevier, vol. 199(C).
    10. Askarova, Aliya & Georgiev, Aleksandar & Bolegenova, Saltanat & Beketayeva, Meruyert & Maximov, Valeriyu & Bolegenova, Symbat, 2022. "Computational modeling of pollutants in furnaces of pulverized coal boilers of the republic of Kazakhstan," Energy, Elsevier, vol. 258(C).
    11. Shen, Wenkai & Liu, Li & Hu, Qiming & Liu, Guichuang & Wang, Jiwei & Zhang, Ning & Wu, Shaohua & Qiu, Penghua & Song, Shaowei, 2021. "Combustion characteristics of ignition processes for lean premixed swirling combustor under visual conditions," Energy, Elsevier, vol. 218(C).
    12. Chen, Heng & Li, Jiarui & Li, Tongyu & Xu, Gang & Jin, Xi & Wang, Min & Liu, Tong, 2022. "Performance assessment of a novel medical-waste-to-energy design based on plasma gasification and integrated with a municipal solid waste incineration plant," Energy, Elsevier, vol. 245(C).
    13. Tremel, Alexander & Haselsteiner, Thomas & Nakonz, Mario & Spliethoff, Hartmut, 2012. "Coal and char properties in high temperature entrained flow gasification," Energy, Elsevier, vol. 45(1), pages 176-182.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawlak-Kruczek, Halina & Mularski, Jakub & Ostrycharczyk, Michał & Czerep, Michał & Baranowski, Marcin & Mączka, Tadeusz & Sadowski, Krzysztof & Hulisz, Patryk, 2023. "Application of plasma burners for char combustion in a pulverized coal-fired (PC) boiler – Experimental and numerical analysis," Energy, Elsevier, vol. 279(C).
    2. Guo, Kaifang & Sun, Dechuan & Zeng, Zhuoxiong, 2023. "Numerical study of ignition process in vortex cold wall combustion chamber," Energy, Elsevier, vol. 262(PA).
    3. Caferra, Rocco & D'Adamo, Idiano & Morone, Piergiuseppe, 2023. "Wasting energy or energizing waste? The public acceptance of waste-to-energy technology," Energy, Elsevier, vol. 263(PE).
    4. Lv, Jiayang & Wang, Yinan & Chen, Heng & Li, Wenchao & Pan, Peiyuan & Wu, Lining & Xu, Gang & Zhai, Rongrong, 2023. "Thermodynamic and economic analysis of a conceptual system combining medical waste plasma gasification, SOFC, sludge gasification, supercritical CO2 cycle, and desalination," Energy, Elsevier, vol. 282(C).
    5. Vijayaragavan Krishnamoorthy & Sarma V. Pisupati, 2019. "Effect of Temperature, Pressure, Feed Particle Size, and Feed Particle Density on Structural Characteristics and Reactivity of Chars Generated during Gasification of Pittsburgh No.8 Coal in a High-Pre," Energies, MDPI, vol. 12(24), pages 1-27, December.
    6. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    7. Dorokhov, V.V. & Kuznetsov, G.V. & Vershinina, K.Yu. & Strizhak, P.A., 2021. "Relative energy efficiency indicators calculated for high-moisture waste-based fuel blends using multiple-criteria decision-making," Energy, Elsevier, vol. 234(C).
    8. Timur Kogabayev & Anne Põder & Henrik Barth & Rando Värnik, 2023. "Prospects for Wood Pellet Production in Kazakhstan: A Case Study on Business Model Adjustment," Energies, MDPI, vol. 16(15), pages 1-20, August.
    9. Mao, Lirui & Zheng, Mingdong & Li, Hanxu, 2023. "Acceleration effect of BDO tar on coal water slurry during co-gasification," Energy, Elsevier, vol. 262(PA).
    10. Liu, Yang & Fu, Peifang & Yu, Bo & Yan, Weijie & Chen, Yumin & Zhou, Huaichun, 2023. "Intrinsic combustion kinetics of rapid-pyrolysis Zhundong coal char," Energy, Elsevier, vol. 262(PB).
    11. Mesut Samastı & Yusuf Sait Türkan & Mustafa Güler & Mirac Nur Ciner & Ersin Namlı, 2024. "Site Selection of Medical Waste Disposal Facilities Using the Interval-Valued Neutrosophic Fuzzy EDAS Method: The Case Study of Istanbul," Sustainability, MDPI, vol. 16(7), pages 1-17, March.
    12. Dmitrii Antonov & Olga Gaidukova & Galina Nyashina & Dmitrii Razumov & Pavel Strizhak, 2022. "Prospects of Using Gas Hydrates in Power Plants," Energies, MDPI, vol. 15(12), pages 1-20, June.
    13. Lei, Yang & Chen, Yuming & Chen, Jinghai & Liu, Xinyan & Wu, Xiaoqin & Chen, Yuqiu, 2023. "A novel modeling strategy for the prediction on the concentration of H2 and CH4 in raw coke oven gas," Energy, Elsevier, vol. 273(C).
    14. Long Zhang & Jingzheng Ren & Wuliyasu Bai, 2023. "A Review of Poultry Waste-to-Wealth: Technological Progress, Modeling and Simulation Studies, and Economic- Environmental and Social Sustainability," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    15. Gerrit Ralf Surup & Hamideh Kaffash & Yan Ma & Anna Trubetskaya & Johan Berg Pettersen & Merete Tangstad, 2022. "Life Cycle Based Climate Emissions of Charcoal Conditioning Routes for the Use in the Ferro-Alloy Production," Energies, MDPI, vol. 15(11), pages 1-28, May.
    16. Maxim Belonogov & Vadim Dorokhov & Dmitrii Glushkov & Daria Kuznechenkova & Daniil Romanov, 2023. "Combustion Characteristics of Coal-Water Slurry Droplets in High-Temperature Air with the Addition of Syngas," Energies, MDPI, vol. 16(8), pages 1-17, April.
    17. Aliya Askarova & Montserrat Zamorano & Jaime Martín-Pascual & Aizhan Nugymanova & Saltanat Bolegenova, 2022. "A Review of the Energy Potential of Residual Biomass for Coincineration in Kazakhstan," Energies, MDPI, vol. 15(17), pages 1-15, September.
    18. Geniy Kuznetsov & Dmitrii Antonov & Maxim Piskunov & Leonid Yanovskyi & Olga Vysokomornaya, 2022. "Alternative Liquid Fuels for Power Plants and Engines for Aviation, Marine, and Land Applications," Energies, MDPI, vol. 15(24), pages 1-21, December.
    19. Zhang, Zongxi & Zhou, Yuguang & Zhao, Nan & Li, Huan & Tohniyaz, Bahargul & Mperejekumana, Philbert & Hong, Quan & Wu, Rucong & Li, Gang & Sultan, Muhammad & Zayan, Ali Mohammed Ibrahim & Cao, Jinxin , 2021. "Clean heating during winter season in Northern China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Alexander Ashikhmin & Nikita Khomutov & Roman Volkov & Maxim Piskunov & Pavel Strizhak, 2023. "Effect of Monodisperse Coal Particles on the Maximum Drop Spreading after Impact on a Solid Wall," Energies, MDPI, vol. 16(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223010290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.