IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipbs0360544222024343.html
   My bibliography  Save this article

Intrinsic combustion kinetics of rapid-pyrolysis Zhundong coal char

Author

Listed:
  • Liu, Yang
  • Fu, Peifang
  • Yu, Bo
  • Yan, Weijie
  • Chen, Yumin
  • Zhou, Huaichun

Abstract

Driven by the demand for accurate intrinsic kinetics for the prediction of the combustion rate of purely fired Zhundong coal (ZDC) in a slag tapping boiler, the surface activation function (SAF) and intrinsic kinetic parameters of two types of rapid-pyrolysis ZDC chars were revealed via the isothermal and nonisothermal thermogravimetric analysis methods. The isothermal kinetic results show that the activation energy (E), reaction order and SAF of these two chars were the same, at 146 kJ/mol, 0.78 and X0.44 (1 – X)−0.48, respectively. Therefore, the difference in the intrinsic reaction rate between these two chars was caused only by the different pre-exponential factors, which are mainly influenced by the specific surface area and catalytic elements in char ash. Nonisothermal kinetic parameters were obtained via the isothermal model-fitting method (ISOM), thereby using the isothermal SAF to fit the nonisothermal data at different heating rates (βs). The results indicate that the E values of the two chars were 148.95 ± 3.12 kJ/mol and 146.16 ± 1.66 kJ/mol, indicating that β has little influence on E. These measured values are consistent with the isothermal E values, so the ISOM is suitable for the determination of the nonisothermal kinetics of rapid-pyrolysis char combustion.

Suggested Citation

  • Liu, Yang & Fu, Peifang & Yu, Bo & Yan, Weijie & Chen, Yumin & Zhou, Huaichun, 2023. "Intrinsic combustion kinetics of rapid-pyrolysis Zhundong coal char," Energy, Elsevier, vol. 262(PB).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222024343
    DOI: 10.1016/j.energy.2022.125548
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222024343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martelli, Emanuele & Kreutz, Thomas & Carbo, Michiel & Consonni, Stefano & Jansen, Daniel, 2011. "Shell coal IGCCS with carbon capture: Conventional gas quench vs. innovative configurations," Applied Energy, Elsevier, vol. 88(11), pages 3978-3989.
    2. Li, Guangyu & Xu, Shisen & Zhao, Xuebin & Sun, Ruijin & Wang, Chang’an & Liu, Kang & Mao, Qisen & Che, Defu, 2020. "Investigation of chemical composition and morphology of ash deposition in syngas cooler of an industrialized two-stage entrained-flow coal gasifier," Energy, Elsevier, vol. 194(C).
    3. Tremel, Alexander & Haselsteiner, Thomas & Nakonz, Mario & Spliethoff, Hartmut, 2012. "Coal and char properties in high temperature entrained flow gasification," Energy, Elsevier, vol. 45(1), pages 176-182.
    4. Jayaraman, Kandasamy & Kök, Mustafa Versan & Gökalp, Iskender, 2020. "Combustion mechanism and model free kinetics of different origin coal samples: Thermal analysis approach," Energy, Elsevier, vol. 204(C).
    5. Lu, Yang & Wang, Ying & Zhang, Jing & Xu, Ying & Li, Guoqiang & Zhang, Yongfa, 2019. "Investigation on the catalytic effect of AAEMs in Zhundong coal on the combustion characteristics of Changji oil shale and its kinetics," Energy, Elsevier, vol. 178(C), pages 89-100.
    6. He, Qing & Gong, Yan & Ding, Lu & Guo, Qinghua & Yoshikawa, Kunio & Yu, Guangsuo, 2021. "Reactivity prediction and mechanism analysis of raw and demineralized coal char gasification," Energy, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Fan & Xiong, Biao & Huang, Xiaohong & Liu, Zhaohui, 2023. "Theoretical analysis and experimental verification of diminishing the diffusion influence on determination of char oxidation kinetics by thermo-gravimetric analysis," Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shunji Kang & Zhi Shen & Xizhou Shen & Liuya Fang & Li Xiang & Wenze Yang, 2021. "Experimental investigation on CO2 desorption kinetics from MDEA + PZ and comparison with MDEA/MDEA + DEA aqueous solutions with thermo‐gravimetric analysis method," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(5), pages 974-987, October.
    2. Vijayaragavan Krishnamoorthy & Sarma V. Pisupati, 2019. "Effect of Temperature, Pressure, Feed Particle Size, and Feed Particle Density on Structural Characteristics and Reactivity of Chars Generated during Gasification of Pittsburgh No.8 Coal in a High-Pre," Energies, MDPI, vol. 12(24), pages 1-27, December.
    3. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    4. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    5. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    6. Feng, Ping & Li, Xiaoyang & Wang, Jinyu & Li, Jie & Wang, Huan & He, Lu, 2021. "The mixtures of bio-oil derived from different biomass and coal/char as biofuels: Combustion characteristics," Energy, Elsevier, vol. 224(C).
    7. Kim, Mukyeong & Ye, Insoo & Jo, Hyunbin & Ryu, Changkook & Kim, Bongkeun & Lee, Jeongsoo, 2020. "New reduced-order model optimized for online dynamic simulation of a Shell coal gasifier," Applied Energy, Elsevier, vol. 263(C).
    8. Liszka, Marcin & Malik, Tomasz & Manfrida, Giampaolo, 2012. "Energy and exergy analysis of hydrogen-oriented coal gasification with CO2 capture," Energy, Elsevier, vol. 45(1), pages 142-150.
    9. Gupta, Saurabh & De, Santanu, 2022. "An experimental investigation of high-ash coal gasification in a pilot-scale bubbling fluidized bed reactor," Energy, Elsevier, vol. 244(PB).
    10. Brenda Raho & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2022. "A Critical Analysis of the Oxy-Combustion Process: From Mathematical Models to Combustion Product Analysis," Energies, MDPI, vol. 15(18), pages 1-25, September.
    11. Ni, Guanhua & Dou, Haoran & Li, Zhao & Zhu, Chuanjie & Sun, Gongshuai & Hu, Xiangming & Wang, Gang & Liu, Yixin & Wang, Zhenyang, 2022. "Study on the combustion characteristics of bituminous coal modified by typical inorganic acids," Energy, Elsevier, vol. 261(PA).
    12. He, Qing & Cheng, Chen & Zhang, Xinsha & Guo, Qinghua & Ding, Lu & Raheem, Abdul & Yu, Guangsuo, 2022. "Insight into structural evolution and detailed non-isothermal kinetic analysis for coal pyrolysis," Energy, Elsevier, vol. 244(PB).
    13. Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
    14. Pettinau, Alberto & Ferrara, Francesca & Amorino, Carlo, 2012. "Techno-economic comparison between different technologies for a CCS power generation plant integrated with a sub-bituminous coal mine in Italy," Applied Energy, Elsevier, vol. 99(C), pages 32-39.
    15. Zhao, Jingyu & Hang, Gai & Song, Jiajia & Lu, Shiping & Ming, Hanqi & Chang, Jiaming & Deng, Jun & Zhang, Yanni & Shu, Chi-Min, 2023. "Spontaneous oxidation kinetics of weathered coal based upon thermogravimetric characteristics," Energy, Elsevier, vol. 275(C).
    16. Scaccabarozzi, Roberto & Gatti, Manuele & Martelli, Emanuele, 2016. "Thermodynamic analysis and numerical optimization of the NET Power oxy-combustion cycle," Applied Energy, Elsevier, vol. 178(C), pages 505-526.
    17. Lee, Adrian J. & Diwekar, Urmila M., 2012. "Optimal sensor placement in integrated gasification combined cycle power systems," Applied Energy, Elsevier, vol. 99(C), pages 255-264.
    18. Pettinau, Alberto & Ferrara, Francesca & Tola, Vittorio & Cau, Giorgio, 2017. "Techno-economic comparison between different technologies for CO2-free power generation from coal," Applied Energy, Elsevier, vol. 193(C), pages 426-439.
    19. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2014. "Prospects of carbon capture and storage (CCS) in India’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 117(C), pages 62-75.
    20. Kreutz, Thomas G. & Larson, Eric D. & Elsido, Cristina & Martelli, Emanuele & Greig, Chris & Williams, Robert H., 2020. "Techno-economic prospects for producing Fischer-Tropsch jet fuel and electricity from lignite and woody biomass with CO2 capture for EOR," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222024343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.