IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v269y2023ics0360544223001421.html
   My bibliography  Save this article

A practical application-oriented model predictive control algorithm for direct expansion (DX) air-conditioning (A/C) systems that balances thermal comfort and energy consumption

Author

Listed:
  • Shao, Junqiang
  • Huang, Zhiyuan
  • Chen, Yugui
  • Li, Depeng
  • Xu, Xiangguo

Abstract

The large ownership of direct-expansion (DX) air-conditioning (A/C) systems in small and medium-sized buildings brings with it the need to reduce their energy consumption without damaging the thermal comfort of the occupants. Model predictive control (MPC) is an effective method to optimally control the operation of air-conditioners. However, most existing MPC methods require the investment of additional equipment and labor-intensive work, which greatly increases the cost of MPC and hinders its practical application. To solve the problem, this paper presents an economical and practical MPC algorithm for DX A/C systems, capable of achieving a balance between thermal comfort and energy saving. The proposed algorithm was experimentally validated on both an experimental DX A/C system and a market available split-type air-conditioner. Experimental results on the experimental DX A/C system show that temperature and humidity set-points selected at α = 1 saved 23.3% of energy consumption compared to those selected at α = 0, while keeping indoor thermal comfort within acceptable range. And results on the split-type air-conditioner demonstrate energy savings of up to more than 32% compared to the baseline and proved that the algorithm can be practically applied on market available D/X air-conditioners.

Suggested Citation

  • Shao, Junqiang & Huang, Zhiyuan & Chen, Yugui & Li, Depeng & Xu, Xiangguo, 2023. "A practical application-oriented model predictive control algorithm for direct expansion (DX) air-conditioning (A/C) systems that balances thermal comfort and energy consumption," Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223001421
    DOI: 10.1016/j.energy.2023.126748
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223001421
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Maomao & Xiao, Fu, 2018. "Price-responsive model-based optimal demand response control of inverter air conditioners using genetic algorithm," Applied Energy, Elsevier, vol. 219(C), pages 151-164.
    2. Li, Ao & Xiao, Fu & Zhang, Chong & Fan, Cheng, 2021. "Attention-based interpretable neural network for building cooling load prediction," Applied Energy, Elsevier, vol. 299(C).
    3. Lee, Zachary E. & Zhang, K. Max, 2021. "Scalable identification and control of residential heat pumps: A minimal hardware approach," Applied Energy, Elsevier, vol. 286(C).
    4. Juricic, Sarah & Goffart, Jeanne & Rouchier, Simon & Foucquier, Aurélie & Cellier, Nicolas & Fraisse, Gilles, 2021. "Influence of natural weather variability on the thermal characterisation of a building envelope," Applied Energy, Elsevier, vol. 288(C).
    5. Knudsen, Michael Dahl & Georges, Laurent & Skeie, Kristian Stenerud & Petersen, Steffen, 2021. "Experimental test of a black-box economic model predictive control for residential space heating," Applied Energy, Elsevier, vol. 298(C).
    6. Mei, Jun & Xia, Xiaohua & Song, Mengjie, 2018. "An autonomous hierarchical control for improving indoor comfort and energy efficiency of a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 221(C), pages 450-463.
    7. Hui, Hongxun & Ding, Yi & Liu, Weidong & Lin, You & Song, Yonghua, 2017. "Operating reserve evaluation of aggregated air conditioners," Applied Energy, Elsevier, vol. 196(C), pages 218-228.
    8. Xu, Yuanjin & Li, Fei & Asgari, Armin, 2022. "Prediction and optimization of heating and cooling loads in a residential building based on multi-layer perceptron neural network and different optimization algorithms," Energy, Elsevier, vol. 240(C).
    9. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2021. "Model predictive control for integrated control of air-conditioning and mechanical ventilation, lighting and shading systems," Applied Energy, Elsevier, vol. 297(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingfei Wang & Xiangshu Kong & Feifei Shan & Wengang Zheng & Pengfei Ren & Jiaoling Wang & Chunling Chen & Xin Zhang & Chunjiang Zhao, 2024. "Temperature Prediction of Mushrooms Based on a Data—Physics Hybrid Approach," Agriculture, MDPI, vol. 14(1), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malik, Anam & Haghdadi, Navid & MacGill, Iain & Ravishankar, Jayashri, 2019. "Appliance level data analysis of summer demand reduction potential from residential air conditioner control," Applied Energy, Elsevier, vol. 235(C), pages 776-785.
    2. Cao, Hui & Lin, Jiajing & Li, Nan, 2023. "Optimal control and energy efficiency evaluation of district ice storage system," Energy, Elsevier, vol. 276(C).
    3. Nadia Jahanafroozi & Saman Shokrpour & Fatemeh Nejati & Omrane Benjeddou & Mohammad Worya Khordehbinan & Afshin Marani & Moncef L. Nehdi, 2022. "New Heuristic Methods for Sustainable Energy Performance Analysis of HVAC Systems," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    4. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    5. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    6. Shan, Kui & Wang, Shengwei, 2017. "Energy efficient design and control of cleanroom environment control systems in subtropical regions – A comparative analysis and on-site validation," Applied Energy, Elsevier, vol. 204(C), pages 582-595.
    7. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    8. Yongzhu Hua & Qiangqiang Xie & Liang Zheng & Jiadong Cui & Lihuan Shao & Weiwei Hu, 2022. "Coordinated Voltage Control Strategy by Optimizing the Limited Regulation Capacity of Air Conditioners," Energies, MDPI, vol. 15(9), pages 1-14, April.
    9. Ntumba Marc-Alain Mutombo & Bubele Papy Numbi, 2022. "Development of a Linear Regression Model Based on the Most Influential Predictors for a Research Office Cooling Load," Energies, MDPI, vol. 15(14), pages 1-20, July.
    10. Pinto, Giuseppe & Deltetto, Davide & Capozzoli, Alfonso, 2021. "Data-driven district energy management with surrogate models and deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
    11. Wang, Jianzhou & Zhang, Linyue & Li, Zhiwu, 2022. "Interval forecasting system for electricity load based on data pre-processing strategy and multi-objective optimization algorithm," Applied Energy, Elsevier, vol. 305(C).
    12. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    13. Xia, Mingchao & Song, Yuguang & Chen, Qifang, 2019. "Hierarchical control of thermostatically controlled loads oriented smart buildings," Applied Energy, Elsevier, vol. 254(C).
    14. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    15. Li, Zening & Su, Su & Jin, Xiaolong & Chen, Houhe, 2021. "Distributed energy management for active distribution network considering aggregated office buildings," Renewable Energy, Elsevier, vol. 180(C), pages 1073-1087.
    16. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    17. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    18. Lee, Zachary E. & Zhang, K. Max, 2021. "Generalized reinforcement learning for building control using Behavioral Cloning," Applied Energy, Elsevier, vol. 304(C).
    19. Chongchong Xu & Zhicheng Liao & Chaojie Li & Xiaojun Zhou & Renyou Xie, 2022. "Review on Interpretable Machine Learning in Smart Grid," Energies, MDPI, vol. 15(12), pages 1-31, June.
    20. He, Deqiang & Teng, Xiaoliang & Chen, Yanjun & Liu, Bin & Wang, Heliang & Li, Xianwang & Ma, Rui, 2022. "Energy saving in metro ventilation system based on multi-factor analysis and air characteristics of piston vent," Applied Energy, Elsevier, vol. 307(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223001421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.