IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics0360544222030225.html
   My bibliography  Save this article

Effect of the phase-transition fluid reaction heat on wellbore temperature in self-propping phase-transition fracturing technology

Author

Listed:
  • Zhang, Nanlin
  • Chen, Zhangxin
  • Luo, Zhifeng
  • Liu, Pingli
  • Chen, Weiyu
  • Liu, Fushen

Abstract

The key to the success of self-propping phase-transition fracturing (SPF) technology using two immiscible fluids to generate proppants in-situ in a reservoir lies in accurate calculations of temperature distribution. As the reaction heat of phase-transition fluid (PF) significantly affects wellbore temperature, reaction kinetic parameters were fitted by experimental data based on the Arrhenius equation, and the transient temperature model considering the reaction heat is established based on the first law of thermodynamics. This model is discretized by the finite difference method and solved by the successive over-relaxation iteration method. The results show that the reaction heat effect on wellbore temperature cannot be ignored. A temperature value and a phase transition time at the well bottom are the largest in the whole wellbore, so the phase transition ratio at the well bottom is the largest. Moreover, since the PF with incomplete phase transition in a wellbore is easier to enter fractures and prop fracture fronts, it is recommended to inject a pre-pad fracturing fluid before injecting PF to reduce wellbore temperature and prevent premature phase transition in the wellbore. These findings can help reveal the action mechanisms of different injection methods and parameters in a heat transfer process, which is of great significance for the theoretical research and field implementation of SPF technology.

Suggested Citation

  • Zhang, Nanlin & Chen, Zhangxin & Luo, Zhifeng & Liu, Pingli & Chen, Weiyu & Liu, Fushen, 2023. "Effect of the phase-transition fluid reaction heat on wellbore temperature in self-propping phase-transition fracturing technology," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222030225
    DOI: 10.1016/j.energy.2022.126136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222030225
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Liqiang & Chen, Yixin & Du, Juan & Liu, Pingli & Li, Nianyin & Luo, Zhifeng & Zhang, Chencheng & Huang, Fushan, 2019. "Experimental Study on a new type of self-propping fracturing technology," Energy, Elsevier, vol. 183(C), pages 249-261.
    2. Yang, Mou & Li, Xiaoxiao & Deng, Jianmin & Meng, Yingfeng & Li, Gao, 2015. "Prediction of wellbore and formation temperatures during circulation and shut-in stages under kick conditions," Energy, Elsevier, vol. 91(C), pages 1018-1029.
    3. Lin Wu & Zhifeng Luo & Liqiang Zhao & Nanling Zhang & Zhiguang Yao & Yucheng Jia, 2022. "Transient temperature‐pressure field model of supercritical CO2 fracturing wellbore with tubing and annulus co‐injection," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(1), pages 85-102, February.
    4. Zhang, Zheng & Xiong, Youming & Gao, Yun & Liu, Liming & Wang, Menghao & Peng, Geng, 2018. "Wellbore temperature distribution during circulation stage when well-kick occurs in a continuous formation from the bottom-hole," Energy, Elsevier, vol. 164(C), pages 964-977.
    5. Zhang, Zheng & Xiong, Youming & Pu, Hui & Sun, Zheng, 2021. "Effect of the variations of thermophysical properties of drilling fluids with temperature on wellbore temperature calculation during drilling," Energy, Elsevier, vol. 214(C).
    6. Lyu, Xinrun & Zhang, Shicheng & Ma, Xinfang & Wang, Fei & Mou, Jianye, 2018. "Numerical study of non-isothermal flow and wellbore heat transfer characteristics in CO2 fracturing," Energy, Elsevier, vol. 156(C), pages 555-568.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zheng & Xiong, Youming & Pu, Hui & Sun, Zheng, 2021. "Effect of the variations of thermophysical properties of drilling fluids with temperature on wellbore temperature calculation during drilling," Energy, Elsevier, vol. 214(C).
    2. Yang, Hongwei & Li, Jun & Liu, Gonghui & Wang, Chao & Li, Mengbo & Jiang, Hailong, 2019. "Numerical analysis of transient wellbore thermal behavior in dynamic deepwater multi-gradient drilling," Energy, Elsevier, vol. 179(C), pages 138-153.
    3. Zhang, Zheng & Wei, Yongqi & Xiong, Youming & Peng, Geng & Wang, Guorong & Lu, Jingsheng & Zhong, Lin & Wang, Jingpeng, 2022. "Influence of the location of drilling fluid loss on wellbore temperature distribution during drilling," Energy, Elsevier, vol. 244(PB).
    4. Abbas, Ahmed K. & Bashikh, Ali A. & Abbas, Hayder & Mohammed, Haider Q., 2019. "Intelligent decisions to stop or mitigate lost circulation based on machine learning," Energy, Elsevier, vol. 183(C), pages 1104-1113.
    5. Ruiyao Zhang & Jun Li & Gonghui Liu & Hongwei Yang & Hailong Jiang, 2019. "Analysis of Coupled Wellbore Temperature and Pressure Calculation Model and Influence Factors under Multi-Pressure System in Deep-Water Drilling," Energies, MDPI, vol. 12(18), pages 1-27, September.
    6. Guo, Yide & Li, Xibing & Huang, Linqi, 2023. "Experimental investigation on the sudden cooling effect of oil-based drilling fluid on the dynamic compressive behavior of deep shale reservoirs," Energy, Elsevier, vol. 282(C).
    7. Bo Feng & Jin Li & Zaoyuan Li & Xuning Wu & Jian Liu & Sheng Huang & Jinfei Sun, 2023. "Enhancing Environmental Protection in Oil and Gas Wells through Improved Prediction Method of Cement Slurry Temperature," Energies, MDPI, vol. 16(13), pages 1-17, June.
    8. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    9. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    10. Jiang, Xingwen & Chen, Mian & Li, Qinghui & Liang, Lihao & Zhong, Zhen & Yu, Bo & Wen, Hang, 2022. "Study on the feasibility of the heat treatment after shale gas reservoir hydration fracturing," Energy, Elsevier, vol. 254(PB).
    11. Zhang, Zheng & Xiong, Youming & Gao, Yun & Liu, Liming & Wang, Menghao & Peng, Geng, 2018. "Wellbore temperature distribution during circulation stage when well-kick occurs in a continuous formation from the bottom-hole," Energy, Elsevier, vol. 164(C), pages 964-977.
    12. Wang, Huaijing, 2023. "Modeling of multiple thermal fluid circulation in horizontal section of wellbores," Energy, Elsevier, vol. 282(C).
    13. Song, Xianzhi & Wang, Gaosheng & Shi, Yu & Li, Ruixia & Xu, Zhengming & Zheng, Rui & Wang, Yu & Li, Jiacheng, 2018. "Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system," Energy, Elsevier, vol. 164(C), pages 1298-1310.
    14. Yixin Chen & Yu Sang & Jianchun Guo & Jian Yang & Weihua Chen & Fei Liu & Ji Zeng & Botao Tang, 2022. "Synthesis and Characterization of a Novel Self-Generated Proppant Fracturing Fluid System," Energies, MDPI, vol. 15(22), pages 1-21, November.
    15. Zhang, Zhi & Sun, Baojiang & Wang, Zhiyuan & Mu, Xiaojie & Sun, Dalin, 2023. "Multiphase throttling characteristic analysis and structure optimization design of throttling valve in managed pressure drilling," Energy, Elsevier, vol. 262(PB).
    16. Yang, Hongwei & Li, Jun & Zhang, Hui & Jiang, Jiwei & Guo, Boyun & Zhang, Geng, 2022. "Numerical analysis of heat transfer rate and wellbore temperature distribution under different circulating modes of Reel-well drilling," Energy, Elsevier, vol. 254(PB).
    17. Jingpeng Wang & Youming Xiong & Zongyu Lu & Jiangang Shi & Jiwei Wu, 2021. "Influence of Volume Fracturing on Casing Stress in Horizontal Wells," Energies, MDPI, vol. 14(8), pages 1-14, April.
    18. Hou, Lei & Cheng, Yiyan & Wang, Xiaoyu & Ren, Jianhua & Geng, Xueyu, 2022. "Effect of slickwater-alternate-slurry injection on proppant transport at field scales: A hybrid approach combining experiments and deep learning," Energy, Elsevier, vol. 242(C).
    19. Xinrun Lyu & Shicheng Zhang & Yueying He & Zihan Zhuo & Chong Zhang & Zhan Meng, 2021. "Numerical Investigation on Wellbore Temperature Prediction during the CO 2 Fracturing in Horizontal Wells," Sustainability, MDPI, vol. 13(10), pages 1-33, May.
    20. Yang, Mou & Luo, Dayu & Chen, Yuanhang & Li, Gao & Tang, Daqian & Meng, Yingfeng, 2019. "Establishing a practical method to accurately determine and manage wellbore thermal behavior in high-temperature drilling," Applied Energy, Elsevier, vol. 238(C), pages 1471-1483.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222030225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.