IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipbs0360544222013251.html
   My bibliography  Save this article

Study on the feasibility of the heat treatment after shale gas reservoir hydration fracturing

Author

Listed:
  • Jiang, Xingwen
  • Chen, Mian
  • Li, Qinghui
  • Liang, Lihao
  • Zhong, Zhen
  • Yu, Bo
  • Wen, Hang

Abstract

Hydraulic fracturing is typically required before shale gas production. Residual fracturing fluid in the reservoir leads to a hydration reaction and weakens the fracturing effect. To address these problems, an additional process during the reservoir heat treatment at the time point after hydraulic fracturing and before formal extraction is proposed, namely, heat treatment after shale gas reservoir hydraulic fracturing, and analysis of the Sichuan Longmaxi Shale is used as an example. The feasibility of the method has been demonstrated by observing the changes in porosity, permeability, tensile strength and other parameters of hydrated shale after heating and exploring the influencing factors and change laws associated with each parameter. Experiments can be conducted to verify that after heating the hydrated shale, the heating temperature, heating rate and holding time are positively correlated with shale porosity, permeability and tensile strength. After shale hydration, the elastic modulus, yield limit and compressive strength decrease; after hydrated shale heat treatment, the compressive strength decreases slightly, while the elastic modulus and yield limit increase, but they are lower than those of the original shale. The changes in the parameters have a positive effect on shale gas production, and this method is theoretically feasible.

Suggested Citation

  • Jiang, Xingwen & Chen, Mian & Li, Qinghui & Liang, Lihao & Zhong, Zhen & Yu, Bo & Wen, Hang, 2022. "Study on the feasibility of the heat treatment after shale gas reservoir hydration fracturing," Energy, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222013251
    DOI: 10.1016/j.energy.2022.124422
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222013251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124422?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Liqiang & Chen, Yixin & Du, Juan & Liu, Pingli & Li, Nianyin & Luo, Zhifeng & Zhang, Chencheng & Huang, Fushan, 2019. "Experimental Study on a new type of self-propping fracturing technology," Energy, Elsevier, vol. 183(C), pages 249-261.
    2. Sui, Lili & Ju, Yang & Yang, Yongming & Yang, Yong & Li, Aishan, 2016. "A quantification method for shale fracability based on analytic hierarchy process," Energy, Elsevier, vol. 115(P1), pages 637-645.
    3. Zhang, Wei & Guo, Tian-kui & Qu, Zhan-qing & Wang, Zhiyuan, 2019. "Research of fracture initiation and propagation in HDR fracturing under thermal stress from meso-damage perspective," Energy, Elsevier, vol. 178(C), pages 508-521.
    4. Cong, Ziyuan & Li, Yuwei & Pan, Yishan & Liu, Bo & Shi, Ying & Wei, Jianguang & Li, Wei, 2022. "Study on CO2 foam fracturing model and fracture propagation simulation," Energy, Elsevier, vol. 238(PB).
    5. Dong, Xiao & Trembly, Jason & Bayless, David, 2017. "Techno-economic analysis of hydraulic fracking flowback and produced water treatment in supercritical water reactor," Energy, Elsevier, vol. 133(C), pages 777-783.
    6. He, Jianming & Li, Xiao & Yin, Chao & Zhang, Yixiang & Lin, Chong, 2020. "Propagation and characterization of the micro cracks induced by hydraulic fracturing in shale," Energy, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ze & Li, Gao & Li, Hongtao & Liu, Jinyuan & Jiang, Zujun & (Bill) Zeng, Fanhua, 2023. "Effects of shale swelling on shale mechanics during shale–liquid interaction," Energy, Elsevier, vol. 279(C).
    2. Guo, Yide & Li, Xibing & Huang, Linqi, 2023. "Experimental investigation on the sudden cooling effect of oil-based drilling fluid on the dynamic compressive behavior of deep shale reservoirs," Energy, Elsevier, vol. 282(C).
    3. Wei, Jianguang & Zhang, Ao & Li, Jiangtao & Shang, Demiao & Zhou, Xiaofeng, 2023. "Study on microscale pore structure and bedding fracture characteristics of shale oil reservoir," Energy, Elsevier, vol. 278(PA).
    4. Kang, Zhiqin & Jiang, Xing & Wang, Lei & Yang, Dong & Ma, Yulin & Zhao, Yangsheng, 2023. "Comparative investigation of in situ hydraulic fracturing and high-temperature steam fracturing tests for meter-scale oil shale," Energy, Elsevier, vol. 281(C).
    5. Zhang, Jun, 2023. "Performance of high temperature steam injection in horizontal wells of heavy oil reservoirs," Energy, Elsevier, vol. 282(C).
    6. Wang, Huaijing, 2023. "Modeling of multiple thermal fluid circulation in horizontal section of wellbores," Energy, Elsevier, vol. 282(C).
    7. Wei, Jianguang & Fu, Lanqing & Zhao, Guozhong & Zhao, Xiaoqing & Liu, Xinrong & Wang, Anlun & Wang, Yan & Cao, Sheng & Jin, Yuhan & Yang, Fengrui & Liu, Tianyang & Yang, Ying, 2023. "Nuclear magnetic resonance study on imbibition and stress sensitivity of lamellar shale oil reservoir," Energy, Elsevier, vol. 282(C).
    8. Nie, Bin, 2023. "Diffusion characteristics of shale mixed gases on the wall of microscale fractures," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Peng & Xia, Yucheng & Yao, Tingwei & Jiang, Xu & Xiao, Peiyao & He, Zexuan & Zhou, Desheng, 2022. "Formation mechanisms of hydraulic fracture network based on fracture interaction," Energy, Elsevier, vol. 243(C).
    2. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    3. Wang, Chongyang & Zhang, Dongming & Liu, Chenxi & Pan, Yisha & Jiang, Zhigang & Yu, Beichen & Lin, Yun, 2023. "Deformation and seepage characteristics of water-saturated shale under true triaxial stress," Energy, Elsevier, vol. 284(C).
    4. Liang, Cun-Guang & Guo, Ze-Shi & Yue, Xiu & Li, Hui & Ma, Peng-Cheng, 2023. "Microwave-assisted breakage of basalt: A viewpoint on analyzing the thermal and mechanical behavior of rock," Energy, Elsevier, vol. 273(C).
    5. Cui, Song & Liu, Songyong & Li, Hongsheng & Zhou, Fangyue & Sun, Dunkai, 2022. "Critical parameters investigation of rock breaking by high-pressure foam fracturing method," Energy, Elsevier, vol. 258(C).
    6. Yang, Fujian & Wang, Guiling & Hu, Dawei & Liu, Yanguang & Zhou, Hui & Tan, Xianfeng, 2021. "Calibrations of thermo-hydro-mechanical coupling parameters for heating and water-cooling treated granite," Renewable Energy, Elsevier, vol. 168(C), pages 544-558.
    7. Zhao, Peng & Liu, Jun & Elsworth, Derek, 2023. "Numerical study on a multifracture enhanced geothermal system considering matrix permeability enhancement induced by thermal unloading," Renewable Energy, Elsevier, vol. 203(C), pages 33-44.
    8. Kang, Fangchao & Jia, Tianrang & Li, Yingchun & Deng, Jianhui & Tang, Chun'an & Huang, Xin, 2021. "Experimental study on the physical and mechanical variations of hot granite under different cooling treatments," Renewable Energy, Elsevier, vol. 179(C), pages 1316-1328.
    9. Zhang, Wei & Wang, Chunguang & Guo, Tiankui & He, Jiayuan & Zhang, Le & Chen, Shaojie & Qu, Zhanqing, 2021. "Study on the cracking mechanism of hydraulic and supercritical CO2 fracturing in hot dry rock under thermal stress," Energy, Elsevier, vol. 221(C).
    10. Liu, Zhaoyi & Pan, Zhejun & Li, Shibin & Zhang, Ligang & Wang, Fengshan & Han, Lingling & Zhang, Jun & Ma, Yuanyuan & Li, Hao & Li, Wei, 2022. "Study on the effect of cemented natural fractures on hydraulic fracture propagation in volcanic reservoirs," Energy, Elsevier, vol. 241(C).
    11. Yang, Jinghua & Wang, Min & Wu, Lei & Liu, Yanwei & Qiu, Shuxia & Xu, Peng, 2021. "A novel Monte Carlo simulation on gas flow in fractal shale reservoir," Energy, Elsevier, vol. 236(C).
    12. Gou, Qiyang & Xu, Shang & Hao, Fang & Yang, Feng & Shu, Zhiguo & Liu, Rui, 2021. "The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation," Energy, Elsevier, vol. 219(C).
    13. Cao, Meng & Sharma, Mukul M., 2023. "Effect of fracture geometry, topology and connectivity on energy recovery from enhanced geothermal systems," Energy, Elsevier, vol. 282(C).
    14. Xue, Yi & Liu, Shuai & Chai, Junrui & Liu, Jia & Ranjith, P.G. & Cai, Chengzheng & Gao, Feng & Bai, Xue, 2023. "Effect of water-cooling shock on fracture initiation and morphology of high-temperature granite: Application of hydraulic fracturing to enhanced geothermal systems," Applied Energy, Elsevier, vol. 337(C).
    15. Lan, Wenjian & Wang, Hanxiang & Zhang, Xin & Fan, Hongbo & Feng, Kun & Liu, Yanxin & Sun, Bingyu, 2020. "Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock," Energy, Elsevier, vol. 206(C).
    16. Hui, Gang & Chen, Zhangxin & Wang, Youjing & Zhang, Dongmei & Gu, Fei, 2023. "An integrated machine learning-based approach to identifying controlling factors of unconventional shale productivity," Energy, Elsevier, vol. 266(C).
    17. Fuchun Tian & Yan Jin & Fengming Jin & Xiaonan Ma & Lin Shi & Jun Zhang & Dezhi Qiu & Zhuo Zhang, 2022. "Multi-Fracture Synchronous Propagation Mechanism of Multi-Clustered Fracturing in Interlayered Tight Sandstone Reservoir," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    18. Dong Zhu & Yuqing Fan & Xiaofei Liu & Xiangling Tao & Liegang Miao & Huiwu Jin, 2022. "Characteristics of Acoustic Emission Response during Granite Splitting after High Temperature-Water Cooling Cycles," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    19. Han, Xu & Feng, Fuping & Zhang, Jianwei, 2023. "Study on the whole life cycle integrity of cement interface in heavy oil thermal recovery well under circulating high temperature condition," Energy, Elsevier, vol. 278(PB).
    20. Yixin Chen & Yu Sang & Jianchun Guo & Jian Yang & Weihua Chen & Fei Liu & Ji Zeng & Botao Tang, 2022. "Synthesis and Characterization of a Novel Self-Generated Proppant Fracturing Fluid System," Energies, MDPI, vol. 15(22), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222013251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.