IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v264y2023ics0360544222031358.html
   My bibliography  Save this article

Free nitrous acid (FNA) pretreatment enhances biomethanation of lignocellulosic agro-waste (wheat straw)

Author

Listed:
  • Tamang, Phurba
  • Tyagi, Vinay Kumar
  • Gunjyal, Neelam
  • Rahmani, Ali Mohammad
  • Singh, Rajesh
  • Kumar, Pradeep
  • Ahmed, Banafsha
  • Tyagi, Pooja
  • Banu, Rajesh
  • Varjani, Sunita
  • Kazmi, A.A.

Abstract

Agro-residues having lignocellulosic biomass are considered the most effective source (heating value 16 MJ/kg) for energy production through anaerobic digestion (AD). However, complex lignocellulosic fraction in agro-residue obstructs its biotransformation and is a rate-limiting step of the AD process. This study presents a novel free nitrous acid (FNA) pretreatment to enhance the biomethanation of wheat straw (WS). The effect of FNA pretreatment was evaluated through anaerobic digestion test and model-based evaluation performed in two phases, i.e., mono-digestion (phase I) and co-digestion of wheat straw with cattle manure and food waste (phase II). For phase I, the first-order, transference, and dual pool first-order models showed the best model fit with R2 > 0.98, but the dual pool first-order model (DP-FOM) showed the least root mean square error (RMSE) of 1.88–62.10. The DP-FOM analysis of assays from anaerobic digestion test showed the biogas yields of 576, 564, and 565 mL/g VSadded at 1.77, 3.54, and 5.31 mg HNO2–N/L FNA concentrations and 12 h reaction time, respectively. The corresponding increment in biogas yields was 10.87, 8.85 and 8.80%. In phase II, DP-FOM analysis revealed the best model fit with R2 > 0.99 and the least RMSE of 8.88–13.04. The DP-FOM analysis from assays from anaerobic digestion test for 12 h FNA pretreatment showed the peak biogas yields of 715, 648, and 654mL/gVSadded at 1.77, 3.54 and 5.31 mg HNO2–N/L FNA concentrations, respectively. The corresponding improvement in biogas yields was 32.24, 19.81, and 20.90%. The FNA pretreatment can potentially improve the biogas yield from wheat straw effectively under mono- and co-digestion conditions. Even co-digestion could achieve enhanced biogas yield over mono-digestion.

Suggested Citation

  • Tamang, Phurba & Tyagi, Vinay Kumar & Gunjyal, Neelam & Rahmani, Ali Mohammad & Singh, Rajesh & Kumar, Pradeep & Ahmed, Banafsha & Tyagi, Pooja & Banu, Rajesh & Varjani, Sunita & Kazmi, A.A., 2023. "Free nitrous acid (FNA) pretreatment enhances biomethanation of lignocellulosic agro-waste (wheat straw)," Energy, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222031358
    DOI: 10.1016/j.energy.2022.126249
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222031358
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Xue & Lant, Paul A. & Jensen, Paul D. & Astals, Sergi & Pratt, Steven, 2016. "Enhanced methane production from algal digestion using free nitrous acid pre-treatment," Renewable Energy, Elsevier, vol. 88(C), pages 383-390.
    2. S. Bhuvaneshwari & Hiroshan Hettiarachchi & Jay N. Meegoda, 2019. "Crop Residue Burning in India: Policy Challenges and Potential Solutions," IJERPH, MDPI, vol. 16(5), pages 1-19, March.
    3. Lohan, Shiv Kumar & Jat, H.S. & Yadav, Arvind Kumar & Sidhu, H.S. & Jat, M.L. & Choudhary, Madhu & Peter, Jyotsna Kiran & Sharma, P.C., 2018. "Burning issues of paddy residue management in north-west states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 693-706.
    4. Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1462-1476.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Campo, Giuseppe & Cerutti, Alberto & Zanetti, Mariachiara & De Ceglia, Margherita & Scibilia, Gerardo & Ruffino, Barbara, 2023. "A modelling approach for the assessment of energy recovery and impact on the water line of sludge pre-treatments," Energy, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruoyu Lan & Sebastian D. Eastham & Tianjia Liu & Leslie K. Norford & Steven R. H. Barrett, 2022. "Air quality impacts of crop residue burning in India and mitigation alternatives," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Graham, Neal T. & Gakkhar, Nikhil & Singh, Akash Deep & Evans, Meredydd & Stelmach, Tanner & Durga, Siddarth & Godara, Rakesh & Gajera, Bhautik & Wise, Marshall & Sarma, Anil K., 2022. "Integrated analysis of increased bioenergy futures in India," Energy Policy, Elsevier, vol. 168(C).
    3. Kusuma, Ravi Teja & Hiremath, Rahul B. & Rajesh, Pachimatla & Kumar, Bimlesh & Renukappa, Suresh, 2022. "Sustainable transition towards biomass-based cement industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    4. Ezeilo, Uchenna R. & Wahab, Roswanira Abdul & Mahat, Naji Arafat, 2020. "Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation," Renewable Energy, Elsevier, vol. 156(C), pages 1301-1312.
    5. Senghor, A. & Dioh, R.M.N. & Müller, C. & Youm, I., 2017. "Cereal crops for biogas production: A review of possible impact of elevated CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 548-554.
    6. Du, Jing & Qian, Yuting & Xi, Yonglan & Lü, Xiwu, 2019. "Hydrothermal and alkaline thermal pretreatment at mild temperature in solid state for physicochemical properties and biogas production from anaerobic digestion of rice straw," Renewable Energy, Elsevier, vol. 139(C), pages 261-267.
    7. da Silva, Francinaldo Leite & de Oliveira Campos, Alan & dos Santos, Davi Alves & Batista Magalhães, Emilianny Rafaely & de Macedo, Gorete Ribeiro & dos Santos, Everaldo Silvino, 2018. "Valorization of an agroextractive residue—Carnauba straw—for the production of bioethanol by simultaneous saccharification and fermentation (SSF)," Renewable Energy, Elsevier, vol. 127(C), pages 661-669.
    8. Gaurav Kumar Porichha & Yulin Hu & Kasanneni Tirumala Venkateswara Rao & Chunbao Charles Xu, 2021. "Crop Residue Management in India: Stubble Burning vs. Other Utilizations including Bioenergy," Energies, MDPI, vol. 14(14), pages 1-17, July.
    9. Weronika Kruszelnicka, 2020. "A New Model for Environmental Assessment of the Comminution Process in the Chain of Biomass Energy Processing †," Energies, MDPI, vol. 13(2), pages 1-21, January.
    10. Kumari, Dolly & Singh, Radhika, 2018. "Pretreatment of lignocellulosic wastes for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 877-891.
    11. Lindmark, Johan & Thorin, Eva & Bel Fdhila, Rebei & Dahlquist, Erik, 2014. "Effects of mixing on the result of anaerobic digestion: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1030-1047.
    12. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    13. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    14. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    15. Ammenberg, Jonas & Feiz, Roozbeh, 2017. "Assessment of feedstocks for biogas production, part II—Results for strategic decision making," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 388-404.
    16. Rajeev Kumar Gupta & Hitesh Hans & Anu Kalia & Jasjit Singh Kang & Jagroop Kaur & Paramjit Kaur Sraw & Anmol Singh & Abed Alataway & Ahmed Z. Dewidar & Mohamed A. Mattar, 2022. "Long-Term Impact of Different Straw Management Practices on Carbon Fractions and Biological Properties under Rice–Wheat System," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    17. Jat, H.S. & Jat, R.D. & Nanwal, R.K. & Lohan, Shiv Kumar & Yadav, A.K. & Poonia, Tanuja & Sharma, P.C. & Jat, M.L., 2020. "Energy use efficiency of crop residue management for sustainable energy and agriculture conservation in NW India," Renewable Energy, Elsevier, vol. 155(C), pages 1372-1382.
    18. Kehinde O. Olatunji & Daniel M. Madyira, 2023. "Optimization of Biomethane Yield of Xyris capensis Grass Using Oxidative Pretreatment," Energies, MDPI, vol. 16(10), pages 1-11, May.
    19. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    20. Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222031358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.