IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipas0360544222021740.html
   My bibliography  Save this article

The use of a thermal diode bridge for passive temperature control in the built environment during the heating seasons – An analytical study

Author

Listed:
  • Wu, Yongjia
  • Yu, Shifeng
  • Wang, Caixia
  • Chen, Qiong
  • Ming, Tingzhen

Abstract

The utilization of solar energy to maintain a stable and comfortable air temperature in the built environment has opened up many opportunities for energy saving. However, the periodical nature of the sunlight intensity introduced extra difficulty in the utilization of solar energy. In this paper, a novel concept of jointly using a thermal diode bridge (TDB) and phase change materials (PCMs) was proposed to continuously control the air temperature in built environments during the heating seasons. During the daytime, the solar energy was efficiently harvested and stored in the PCMs, so the indoor temperature was significantly reduced; at nighttime, the thermal energy stored in the PCMs could be used for space heating without heat loss to the outdoor through heat convection. Because of the existence of the TDB, the heat flux going through the building envelope could be passively controlled. An analytical study to evaluate the operating performance of applying such TDB to controlling the zone air temperature in a built environment was carried out and the results were presented. It was demonstrated that the zone air temperature variation in the built environment was significantly reduced, without any electrical energy consumption and greenhouse gas emission.

Suggested Citation

  • Wu, Yongjia & Yu, Shifeng & Wang, Caixia & Chen, Qiong & Ming, Tingzhen, 2023. "The use of a thermal diode bridge for passive temperature control in the built environment during the heating seasons – An analytical study," Energy, Elsevier, vol. 262(PA).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222021740
    DOI: 10.1016/j.energy.2022.125289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222021740
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ye, Ling & Cheng, Zhijun & Wang, Qingqin & Lin, Haiyan & Lin, Changqing & Liu, Bin, 2015. "Developments of Green Building Standards in China," Renewable Energy, Elsevier, vol. 73(C), pages 115-122.
    2. Yan, Tian & Xu, Xinhua & Gao, Jiajia & Luo, Yongqiang & Yu, Jinghua, 2020. "Performance evaluation of a PCM-embedded wall integrated with a nocturnal sky radiator," Energy, Elsevier, vol. 210(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yongjia & Gao, Yahui & Wang, Caixia & Chen, Qiong & Ming, Tingzhen, 2023. "The energy saving performance of the thermal diode composite wall in different climate regions," Renewable Energy, Elsevier, vol. 219(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
    2. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    3. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2016. "Development of a statistical analysis model to benchmark the energy use intensity of subway stations," Applied Energy, Elsevier, vol. 179(C), pages 488-496.
    4. Yan, Tian & Xu, Dawei & Meng, Jing & Xu, Xinhua & Yu, Zhongyi & Wu, Huijun, 2024. "A review of radiative sky cooling technology and its application in building systems," Renewable Energy, Elsevier, vol. 220(C).
    5. Xinxin Zhou & Yuan Ding & Changbin Wu & Jing Huang & Chendi Hu, 2019. "Measuring the Spatial Allocation Rationality of Service Facilities of Residential Areas Based on Internet Map and Location-Based Service Data," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
    6. Sicheng Wang & Yuanyuan Guo & Hao Zhang & Mingming Gao, 2023. "A Life-Cycle Carbon Emissions Evaluation Model for Traditional Residential Houses: Applying to Traditional Dong Dwellings in Qandongnan, Guizhou Province, China," Sustainability, MDPI, vol. 15(18), pages 1-31, September.
    7. Heejin Han, 2019. "Governance for green urbanisation: Lessons from Singapore’s green building certification scheme," Environment and Planning C, , vol. 37(1), pages 137-156, February.
    8. Taozhi Zhuang & Queena K. Qian & Henk J. Visscher & Marja G. Elsinga, 2017. "Stakeholders’ Expectations in Urban Renewal Projects in China: A Key Step towards Sustainability," Sustainability, MDPI, vol. 9(9), pages 1-21, September.
    9. Shi, Qian & Yu, Tao & Zuo, Jian, 2015. "What leads to low-carbon buildings? A China study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 726-734.
    10. Hana Charvátová & Aleš Procházka & Martin Zálešák, 2020. "Computer Simulation of Passive Cooling of Wooden House Covered by Phase Change Material," Energies, MDPI, vol. 13(22), pages 1-15, November.
    11. Qi-Gan Shao & James J. H. Liou & Sung-Shun Weng & Yen-Ching Chuang, 2018. "Improving the Green Building Evaluation System in China Based on the DANP Method," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    12. Peidong Sang & Jinjian Liu & Lin Zhang & Lingqiao Zheng & Haona Yao & Yanjie Wang, 2018. "Effects of Project Manager Competency on Green Construction Performance: The Chinese Context," Sustainability, MDPI, vol. 10(10), pages 1-17, September.
    13. Cui, Yuanlong & Zhu, Jie & Zhang, Fan & Shao, Yiming & Xue, Yibing, 2022. "Current status and future development of hybrid PV/T system with PCM module: 4E (energy, exergy, economic and environmental) assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Zezhou Wu & Qiufeng He & Kaijie Yang & Jinming Zhang & Kexi Xu, 2020. "Investigating the Dynamics of China’s Green Building Policy Development from 1986 to 2019," IJERPH, MDPI, vol. 18(1), pages 1-19, December.
    16. Gan, Xiaolong & Liu, Lanchi & Wen, Tao & Webber, Ronald, 2022. "Modelling interrelationships between barriers to adopting green building technologies in China's rural housing via grey-DEMATEL," Technology in Society, Elsevier, vol. 70(C).
    17. Park, Ji Hun & Berardi, Umberto & Chang, Seong Jin & Wi, Seunghwan & Kang, Yujin & Kim, Sumin, 2021. "Energy retrofit of PCM-applied apartment buildings considering building orientation and height," Energy, Elsevier, vol. 222(C).
    18. Østergård, Torben & Jensen, Rasmus L. & Maagaard, Steffen E., 2016. "Building simulations supporting decision making in early design – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 187-201.
    19. Wenxi Zhu & Jing Zhang & Da Wang & Chongsen Ma & Jinfan Zhang & Pei Chen, 2023. "Study on the Critical Factors Influencing High-Quality Development of Green Buildings for Carbon Peaking and Carbon Neutrality Goals of China," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    20. Yan Ning & Yadi Li & Shuangshuang Yang & Chuanjing Ju, 2016. "Exploring Socio-Technical Features of Green Interior Design of Residential Buildings: Indicators, Interdependence and Embeddedness," Sustainability, MDPI, vol. 9(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222021740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.