IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipbs0360544222022083.html
   My bibliography  Save this article

Mode transition analysis of a turbine-based combined-cycle considering ammonia injection pre-compressor cooling and variable-geometry ram-combustor

Author

Listed:
  • Lv, Chengkun
  • Xu, Haiqi
  • Chang, Juntao
  • Wang, Youyin
  • Chen, Ruoyu
  • Yu, Daren

Abstract

Mode transition (MT) is a significant process in the turbine-based combined-cycle (TBCC) involving the co-operation of high-speed and low-speed channels. To improve the thrust pinch caused by the deviation of the turbine and ramjet from the design point, a novel TBCC engine with ammonia mass injection pre-compressor cooling (Ammonia MIPCC) and variable-geometry ram-combustor (VGRC) is used to extend the operation envelope of the MT. CFD simulations and shock loss calculations are used to construct combined dual-channel inlet model. Through simulation, we find that the Ammonia MIPCC can reduce the pre-compressor temperature, improve the compressor efficiency, and increase the turbine's specific thrust. Meanwhile, increasing the ramjet combustor expansion ratio (CER) helps to alleviate the inlet unstart and extend the low-speed operating boundary of the ramjet. Furthermore, the extension of the operating envelope for TBCC under the effects of ammonia injection and CER is investigated. Based on specific thrust and specific impulse, the optimal starting Mach number field for MT process is studied, and the corresponding TBCC thrust is given. Overall, the results show that the optimal starting Mach number field for the MT of the proposed TBCC is 2.85–3.2, and two-stage sub-engines have high thrust performance in this range.

Suggested Citation

  • Lv, Chengkun & Xu, Haiqi & Chang, Juntao & Wang, Youyin & Chen, Ruoyu & Yu, Daren, 2022. "Mode transition analysis of a turbine-based combined-cycle considering ammonia injection pre-compressor cooling and variable-geometry ram-combustor," Energy, Elsevier, vol. 261(PB).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222022083
    DOI: 10.1016/j.energy.2022.125324
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222022083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125324?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pham, Quangkhai & Park, Sungwook & Agarwal, Avinash Kumar & Park, Suhan, 2022. "Review of dual-fuel combustion in the compression-ignition engine: Spray, combustion, and emission," Energy, Elsevier, vol. 250(C).
    2. Yu, Xuanfei & Wang, Cong & Yu, Daren, 2019. "Thermodynamic assessment on performance extremes of the fuel indirect precooled cycle for hypersonic airbreathing propulsion," Energy, Elsevier, vol. 186(C).
    3. Zhao, Wei & Huang, Chen & Zhao, Qingjun & Ma, Yingqun & Xu, Jianzhong, 2018. "Performance analysis of a pre-cooled and fuel-rich pre-burned mixed-flow turbofan cycle for high speed vehicles," Energy, Elsevier, vol. 154(C), pages 96-109.
    4. Wang, Youyin & Hou, Wenxin & Zhang, Junlong & Tang, Jingfeng & Chang, Juntao & Bao, Wen, 2021. "Research on the operating boundary of the dual mode scramjet with a constant area combustor through thermodynamic cycle analysis," Energy, Elsevier, vol. 216(C).
    5. Yu, Xuanfei & Wang, Cong & Yu, Daren, 2020. "Series view method based thermodynamic modeling and analysis for innovative precooled aeroengines with different turbine-compressor coupling schemes," Energy, Elsevier, vol. 205(C).
    6. Novelo, David Alejandro Block & Igie, Uyioghosa, 2018. "Aero engine compressor cooling by water injection - Part 1: Evaporative compressor model," Energy, Elsevier, vol. 160(C), pages 1224-1235.
    7. Kwon, Hyun Min & Moon, Seong Won & Kim, Tong Seop & Kang, Do Won, 2020. "Performance enhancement of the gas turbine combined cycle by simultaneous reheating, recuperation, and coolant inter-cooling," Energy, Elsevier, vol. 207(C).
    8. Yang, Qingchun & Chang, Juntao & Bao, Wen, 2014. "Thermodynamic analysis on specific thrust of the hydrocarbon fueled scramjet," Energy, Elsevier, vol. 76(C), pages 552-558.
    9. Yan, Li & Liao, Lei & Meng, Yu-shan & Li, Shi-bin & Huang, Wei, 2020. "Investigation on the mode transition of a typical three-dimensional scramjet combustor equipped with a strut," Energy, Elsevier, vol. 208(C).
    10. Block Novelo, David Alejandro & Igie, Uyioghosa, 2018. "Aero engine compressor cooling by water injection - Part 2: Performance and emission reductions," Energy, Elsevier, vol. 160(C), pages 1236-1243.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, Chengkun & Huang, Qian & Lan, Zhu & Chang, Juntao & Yu, Daren, 2023. "Parametric optimization and exergy analysis of a high mach number aeroengine with an ammonia mass injection pre-compressor cooling cycle," Energy, Elsevier, vol. 282(C).
    2. Jiamao Luo & Shengfang Huang & Shunhua Yang & Wanzhou Zhang & Zhongqiang Mu, 2022. "Effect of Water Injection on Turbine Inlet under Different Flight Conditions," Energies, MDPI, vol. 15(19), pages 1-16, October.
    3. Lv, Chengkun & Huang, Qian & Chang, Juntao & Wang, Ziao & Zheng, Jialin & Yu, Daren, 2023. "Mode transition path optimization for turbine-based combined-cycle ramjet stage under uncertainty propagation of integrated airframe-propulsion system," Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tiantian & Wang, Zhenguo & Huang, Wei & Ingham, Derek & Ma, Lin & Porkashanian, Mohamed, 2020. "An analysis tool of the rocket-based combined cycle engine and its application in the two-stage-to-orbit mission," Energy, Elsevier, vol. 193(C).
    2. Ambe Verma, Kumari & Murari Pandey, Krishna & Ray, Mukul & Kumar Sharma, Kaushal, 2021. "Effect of transverse fuel injection system on combustion efficiency in scramjet combustor," Energy, Elsevier, vol. 218(C).
    3. Pan Zhang & Xiwei Ke & Weiliang Wang & Xueyu Tang & Junfu Lyu & Qinghong Tang, 2023. "Study on the Selection of Single-Screw Steam Compressors in Industrial Steam Supply," Energies, MDPI, vol. 16(10), pages 1-15, May.
    4. Yu, Xuanfei & Wang, Cong & Yu, Daren, 2019. "Precooler-design & engine-performance conjugated optimization for fuel direct precooled airbreathing propulsion," Energy, Elsevier, vol. 170(C), pages 546-556.
    5. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).
    6. Yu, Xuanfei & Wang, Cong & Yu, Daren, 2020. "Series view method based thermodynamic modeling and analysis for innovative precooled aeroengines with different turbine-compressor coupling schemes," Energy, Elsevier, vol. 205(C).
    7. Wang, Cong & Yu, Xuanfei & Pan, Xin & Qin, Jiang & Huang, Hongyan, 2022. "Thermodynamic optimization of the indirect precooled engine cycle using the method of cascade utilization of cold sources," Energy, Elsevier, vol. 238(PB).
    8. Wang, Cong & Yu, Xuanfei & Ha, Chan & Liu, Zekuan & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2023. "Thermodynamic analysis for a novel chemical precooling turbojet engine based on a multi-stage precooling-compression cycle," Energy, Elsevier, vol. 262(PA).
    9. Block Novelo, David Alejandro & Igie, Uyioghosa & Prakash, Vinod & Szymański, Artur, 2019. "Experimental investigation of gas turbine compressor water injection for NOx emission reductions," Energy, Elsevier, vol. 176(C), pages 235-248.
    10. Li, Chaolong & Xia, Zhixun & Ma, Likun & Chen, Binbin & Feng, Yunchao & Zhang, Jiarui & Duan, Yifan, 2023. "Performance analysis on the specific impulse and specific thrust of scramjet with a quasi-one-dimensional model," Energy, Elsevier, vol. 267(C).
    11. Feng, Yu & Liu, Yuna & Cao, Yong & Gong, Keyu & Liu, Shuyuan & Qin, Jiang, 2020. "Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels," Energy, Elsevier, vol. 193(C).
    12. Maria Cristina Cameretti & Roberta De Robbio & Ezio Mancaruso & Marco Palomba, 2022. "CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen," Energies, MDPI, vol. 15(15), pages 1-21, July.
    13. Lv, Chengkun & Huang, Qian & Chang, Juntao & Wang, Ziao & Zheng, Jialin & Yu, Daren, 2023. "Mode transition path optimization for turbine-based combined-cycle ramjet stage under uncertainty propagation of integrated airframe-propulsion system," Energy, Elsevier, vol. 268(C).
    14. Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Zhang, Duo & Bao, Wen & Han, Jiecai, 2016. "Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion," Energy, Elsevier, vol. 114(C), pages 1100-1106.
    15. Liu, Shang & Lin, Zhelong & Zhang, Hao & Lei, Nuo & Qi, Yunliang & Wang, Zhi, 2023. "Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio," Energy, Elsevier, vol. 262(PA).
    16. Pinto, G.M. & da Costa, R.B.R. & de Souza, T.A.Z. & Rosa, A.J.A.C. & Raats, O.O. & Roque, L.F.A. & Frez, G.V. & Coronado, C.J.R., 2023. "Experimental investigation of performance and emissions of a CI engine operating with HVO and farnesane in dual-fuel mode with natural gas and biogas," Energy, Elsevier, vol. 277(C).
    17. Pan, Xin & Xiong, Yuefei & Wang, Cong & Qin, Jiang & Zhang, Silong & Bao, Wen, 2022. "Performance analysis of precooled turbojet engine with a low-temperature endothermic fuel," Energy, Elsevier, vol. 248(C).
    18. Wang, Cong & Feng, Yu & Liu, Zekuan & Wang, Yilin & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2022. "Assessment of thermodynamic performance and CO2 emission reduction for a supersonic precooled turbine engine cycle fueled with a new green fuel of ammonia," Energy, Elsevier, vol. 261(PA).
    19. Aygun, Hakan & Turan, Onder, 2023. "Analysis of cruise conditions on energy, exergy and NOx emission parameters of a turbofan engine for middle-range aircraft," Energy, Elsevier, vol. 267(C).
    20. Xiong, Yuefei & Qin, Jiang & Cheng, Kunlin & Wang, Youyin, 2020. "Influence of water injection on performance of scramjet engine," Energy, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222022083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.