IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipcs0360544222013615.html
   My bibliography  Save this article

Proper orthogonal decomposition of continuum-dominated emission spectra for simultaneous multi-property measurements

Author

Listed:
  • Yoon, Taekeun
  • Kang, Yu-eop
  • Kim, Seon Woong
  • Park, Youchan
  • Yee, Kwanjung
  • Carter, Campbell D.
  • Hammack, Stephen D.
  • Do, Hyungrok

Abstract

A novel spectrum calibration method is proposed for high-accuracy emission spectroscopy to extract quantitative gas property information from the spontaneous photon emission spectra. This is challenging, particularly in the presence of broadband emission, which smears the characteristic local spectral features that are often used as property indicators in conventional emission spectroscopy. Proper orthogonal decomposition (POD) can reduce the dimension (ND) of the broadband spectrum profile by selecting a number (NM≪ND) of dominant bases that span the gas-property-dependent spectrum space. Each POD-decomposed spectral basis represents critical broadband spectral features that are sensitive to the gas properties of interest. A reduced-order model (ROM) employing the kriging method correlates the entire emission spectrum profile that decomposed by the bases to multiple gas properties. To provide a spectrum database to train the ROM, chemiluminescence was captured from a flat flame with varied diluent gas compositions (N2 and CO2), fuel-oxidizer equivalence ratios, and pressures (1–5 bar). Subsequently, the ROM employing an emission spectrum can predict the gas properties under high-temperature and high-pressure conditions where conventional sensors are inapplicable. The average relative prediction errors obtained using this new analysis method were approximately 3.2% and 1.3% for the pressure and equivalence ratio, respectively.

Suggested Citation

  • Yoon, Taekeun & Kang, Yu-eop & Kim, Seon Woong & Park, Youchan & Yee, Kwanjung & Carter, Campbell D. & Hammack, Stephen D. & Do, Hyungrok, 2022. "Proper orthogonal decomposition of continuum-dominated emission spectra for simultaneous multi-property measurements," Energy, Elsevier, vol. 254(PC).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222013615
    DOI: 10.1016/j.energy.2022.124458
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222013615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124458?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iwata, Kazuya & Koide, Hiroki & Imamura, Osamu & Yamasaki, Hiroshi & Akihama, Kazuhiro, 2019. "Experimental measurement of atomic composition in sooting luminous flame by Laser-Induced Breakdown Spectroscopy," Energy, Elsevier, vol. 188(C).
    2. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    3. Kamal, M. Mustafa, 2020. "Two-line (CH∗/CO2∗) chemiluminescence technique for equivalence ratio mapping in turbulent stratified flames," Energy, Elsevier, vol. 192(C).
    4. Owebor, K. & Diemuodeke, E.O. & Briggs, T.A., 2022. "Thermo-economic and environmental analysis of integrated power plant with carbon capture and storage technology," Energy, Elsevier, vol. 240(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Obeidi, Nabil & Kermadi, Mostefa & Belmadani, Bachir & Allag, Abdelkrim & Achour, Lazhar & Mesbahi, Nadhir & Mekhilef, Saad, 2023. "A modified current sensorless approach for maximum power point tracking of partially shaded photovoltaic systems," Energy, Elsevier, vol. 263(PA).
    2. Obara, Shin'ya, 2023. "Economic performance of an SOFC combined system with green hydrogen methanation of stored CO2," Energy, Elsevier, vol. 262(PA).
    3. Liu, Guilin & Mai, Jianfeng, 2022. "Habitat shifts of Jatropha curcas L. in the Asia-Pacific region under climate change scenarios," Energy, Elsevier, vol. 251(C).
    4. Pantua, Conrad Allan Jay & Calautit, John Kaiser & Wu, Yupeng, 2021. "Sustainability and structural resilience of building integrated photovoltaics subjected to typhoon strength winds," Applied Energy, Elsevier, vol. 301(C).
    5. Antunes, Jorge Junio Moreira & Neves, Juliana Campos & Elmor, Larissa Rosa Carneiro & Araujo, Michel Fontaine Reis De & Wanke, Peter Fernandes & Tan, Yong, 2023. "A new perspective on the U.S. energy efficiency: The political context," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    6. Ham, Jeonggyun & Shin, Yunchan & Cho, Honghyun, 2022. "Comparison of thermal performance between a surface and a volumetric absorption solar collector using water and Fe3O4 nanofluid," Energy, Elsevier, vol. 239(PC).
    7. Hong, Ying-Yi & Pula, Rolando A., 2022. "Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network," Energy, Elsevier, vol. 246(C).
    8. Mo, Wenyu & Xiong, Zhe & Leong, Huiyi & Gong, Xi & Jiang, Long & Xu, Jun & Su, Sheng & Hu, Song & Wang, Yi & Xiang, Jun, 2022. "Processes simulation and environmental evaluation of biofuel production via Co-pyrolysis of tropical agricultural waste," Energy, Elsevier, vol. 242(C).
    9. Khan, Irfan & Zakari, Abdulrasheed & Zhang, Jinjun & Dagar, Vishal & Singh, Sanjeet, 2022. "A study of trilemma energy balance, clean energy transitions, and economic expansion in the midst of environmental sustainability: New insights from three trilemma leadership," Energy, Elsevier, vol. 248(C).
    10. Arévalo, Paúl & Cano, Antonio & Jurado, Francisco, 2022. "Mitigation of carbon footprint with 100% renewable energy system by 2050: The case of Galapagos islands," Energy, Elsevier, vol. 245(C).
    11. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Man, Yi, 2022. "Industrial artificial intelligence based energy management system: Integrated framework for electricity load forecasting and fault prediction," Energy, Elsevier, vol. 244(PB).
    12. Llera, Rocio & Vigil, Miguel & Díaz-Díaz, Sara & Martínez Huerta, Gemma Marta, 2022. "Prospective environmental and techno-economic assessment of steam production by means of heat pipes in the steel industry," Energy, Elsevier, vol. 239(PD).
    13. Castillo Santiago, York & Martínez González, Aldemar & Venturini, Osvaldo J. & Sphaier, Leandro A. & Ocampo Batlle, Eric A., 2022. "Energetic and environmental assessment of oil sludge use in a gasifier/gas microturbine system," Energy, Elsevier, vol. 244(PB).
    14. Huang, Xiaohong & Hu, Fan & Liu, Xuhui & Liu, Zhaohui, 2022. "Structure and reactivity of chars prepared from low-volatile coal under O2/N2 and O2/CO2 conditions in a flat-flame assisted entrained flow reactor," Energy, Elsevier, vol. 261(PB).
    15. Xu, Liang & Liu, Yangyang & Bai, Wenshuai & Tan, Zhaoyang & Xue, Wei, 2022. "Design and control of energy-saving double side-stream extractive distillation for the benzene/isopropanol/water separation," Energy, Elsevier, vol. 239(PA).
    16. PraveenKumar, Seepana & Agyekum, Ephraim Bonah & Kumar, Abhinav & Velkin, Vladimir Ivanovich, 2023. "Performance evaluation with low-cost aluminum reflectors and phase change material integrated to solar PV modules using natural air convection: An experimental investigation," Energy, Elsevier, vol. 266(C).
    17. Nisar, Shahida & Benbi, Dinesh Kumar & Toor, Amardeep Singh, 2021. "Energy budgeting and carbon footprints of three tillage systems in maize-wheat sequence of north-western Indo-Gangetic Plains," Energy, Elsevier, vol. 229(C).
    18. Ouyang, Tiancheng & Xu, Jisong & Qin, Peijia & Cheng, Liang, 2022. "Utilizing flue gas low-grade waste heat and furnace excess heat to produce syngas and sulfuric acid recovery in coal-fired power plant," Energy, Elsevier, vol. 258(C).
    19. Fu, Yue & Wang, Liyuan & Liu, Ming & Wang, Jinshi & Yan, Junjie, 2023. "Performance analysis of coal-fired power plants integrated with carbon capture system under load-cycling operation conditions," Energy, Elsevier, vol. 276(C).
    20. Martinho, Vítor João Pereira Domingues, 2021. "Direct and indirect energy consumption in farming: Impacts from fertilizer use," Energy, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222013615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.