IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v253y2022ics0360544222010155.html
   My bibliography  Save this article

Effect of air flow rate and temperature on the atomization characteristics of biodiesel in internal and external flow fields of the pressure swirl nozzle

Author

Listed:
  • Ma, Xin
  • Wang, Shuang
  • Li, Fashe
  • Zhang, Huicong
  • Jiang, Shang
  • Sui, Meng

Abstract

In this study, the flow and spray of biodiesel in the swirl atomization nozzle were analyzed. The influence of primary air flow rate and temperature on the atomization characteristics in the internal and external flow fields of biodiesel was discussed through simulation and experiments. The velocity of biodiesel in the nozzle and mixing chamber were symmetrically distributed. With increasing primary air flow rate, the maximum speed area increased and the shape of the turbulent kinetic energy of biodiesel changed from columnar to funnel. When the primary air flow rate increased from 10 to 30 L/min, the Sauter mean diameter, (SMD, d32) decreased from 95 to 28 μm, and when it increased to 50 L/min, d32 changed slightly. With increasing fuel temperature, the spray velocity increased and the particle size gradually decreased, while the particle size of each interval remained almost unchanged over 45 °C. Therefore, the best primary air flow rate and temperature for the swirling atomization of biodiesel were 30 L/min and 45 °C. It was determined that the increase in air flow rate and temperature promoted the development of atomization flow field and the breaking of droplets in biodiesel, thus optimizing the swirling atomization of biodiesel.

Suggested Citation

  • Ma, Xin & Wang, Shuang & Li, Fashe & Zhang, Huicong & Jiang, Shang & Sui, Meng, 2022. "Effect of air flow rate and temperature on the atomization characteristics of biodiesel in internal and external flow fields of the pressure swirl nozzle," Energy, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010155
    DOI: 10.1016/j.energy.2022.124112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222010155
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silva Herran, Diego & Tachiiri, Kaoru & Matsumoto, Ken'ichi, 2019. "Global energy system transformations in mitigation scenarios considering climate uncertainties," Applied Energy, Elsevier, vol. 243(C), pages 119-131.
    2. Khan, Mohammed Asad & Gadgil, Hrishikesh & Kumar, Sudarshan, 2019. "Influence of liquid properties on atomization characteristics of flow-blurring injector at ultra-low flow rates," Energy, Elsevier, vol. 171(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vinay Sankar & Sreejith Sudarsanan & Sudipto Mukhopadhyay & Prabhu Selvaraj & Aravind Balakrishnan & Ratna Kishore Velamati, 2023. "Towards the Development of Miniature Scale Liquid Fuel Combustors for Power Generation Application—A Review," Energies, MDPI, vol. 16(10), pages 1-41, May.
    2. Flavio R. Arroyo M. & Luis J. Miguel, 2019. "The Trends of the Energy Intensity and CO 2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    3. Liu, Jiahong & Wang, Jia & Ding, Xiangyi & Shao, Weiwei & Mei, Chao & Li, Zejin & Wang, Kaibo, 2020. "Assessing the mitigation of greenhouse gas emissions from a green infrastructure-based urban drainage system," Applied Energy, Elsevier, vol. 278(C).
    4. Dariusz Mikielewicz & Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Influence of Different Biofuels on the Efficiency of Gas Turbine Cycles for Prosumer and Distributed Energy Power Plants," Energies, MDPI, vol. 12(16), pages 1-21, August.
    5. Tzen-Ying Ling & Wei-Kai Hung & Chun-Tsu Lin & Michael Lu, 2020. "Dealing with Green Gentrification and Vertical Green-Related Urban Well-Being: A Contextual-Based Design Framework," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    6. Qiumei Ma & Yawei Zhao & Changming Ji & Yanke Zhang & Bo Ming, 2021. "Electricity Curtailment Cost Coupled to Operation Model Facilitates Clean Energy Accommodation in Grid-Connected System," Energies, MDPI, vol. 14(10), pages 1-21, May.
    7. Laha, Priyanka & Chakraborty, Basab, 2021. "Cost optimal combinations of storage technologies for maximizing renewable integration in Indian power system by 2040: Multi-region approach," Renewable Energy, Elsevier, vol. 179(C), pages 233-247.
    8. Shanghui Jia & Xinhui Chen & Liyan Han & Jiayu Jin, 2023. "Global climate change and commodity markets: A hedging perspective," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1393-1422, October.
    9. Matamala, Yolanda & Flores, Francisco & Arriet, Andrea & Khan, Zarrar & Feijoo, Felipe, 2023. "Probabilistic feasibility assessment of sequestration reliance for climate targets," Energy, Elsevier, vol. 272(C).
    10. Wörman, Anders & Uvo, Cintia Bertacchi & Brandimarte, Luigia & Busse, Stefan & Crochemore, Louise & Lopez, Marc Girons & Hao, Shuang & Pechlivanidis, Ilias & Riml, Joakim, 2020. "Virtual energy storage gain resulting from the spatio-temporal coordination of hydropower over Europe," Applied Energy, Elsevier, vol. 272(C).
    11. Li, Pei-Hao & Pye, Steve & Keppo, Ilkka, 2020. "Using clustering algorithms to characterise uncertain long-term decarbonisation pathways," Applied Energy, Elsevier, vol. 268(C).
    12. Karol Tucki & Olga Orynycz & Remigiusz Mruk & Antoni Świć & Katarzyna Botwińska, 2019. "Modeling of Biofuel’s Emissivity for Fuel Choice Management," Sustainability, MDPI, vol. 11(23), pages 1-22, December.
    13. Shin, Jisoo & Kim, Donghwan & Seo, Jeawon & Park, Sungwook, 2020. "Effects of the physical properties of fuel on spray characteristics from a gas turbine nozzle," Energy, Elsevier, vol. 205(C).
    14. Hannan, M.A. & Lipu, M.S. Hossain & Ker, Pin Jern & Begum, R.A. & Agelidis, Vasilios G. & Blaabjerg, F., 2019. "Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Marcin Jamróz & Marian Piwowarski & Paweł Ziemiański & Gabriel Pawlak, 2021. "Technical and Economic Analysis of the Supercritical Combined Gas-Steam Cycle," Energies, MDPI, vol. 14(11), pages 1-21, May.
    16. Sharma, Saurabh & Chowdhury, Arindrajit & Kumar, Sudarshan, 2020. "A novel air injection scheme to achieve MILD combustion in a can-type gas turbine combustor," Energy, Elsevier, vol. 194(C).
    17. Teijo Palander & Stelian Alexandru Borz & Kalle Kärhä, 2021. "Impacts of Road Infrastructure on the Environmental Efficiency of High Capacity Transportation in Harvesting of Renewable Wood Energy," Energies, MDPI, vol. 14(2), pages 1-20, January.
    18. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    19. Zhang, Jun & Du, Xiong & Qian, Cheng, 2021. "Lifetime improvement for wind power generation system based on optimal effectiveness of thermal management," Applied Energy, Elsevier, vol. 286(C).
    20. Łukasz Mamica & Monika Mazur-Bubak & Renata Wróbel-Rotter, 2022. "Can Biogas Plants Become a Significant Part of the New Polish Energy Deal? Business Opportunities for Poland’s Biogas Industry," Sustainability, MDPI, vol. 14(3), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222010155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.