IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v253y2022ics0360544222009811.html
   My bibliography  Save this article

Comparative analysis and multi-objective optimization of hydrogen liquefaction process using either organic Rankine or absorption power cycles driven by dual-source biomass fuel and geothermal energy

Author

Listed:
  • Meng, Yue
  • Wu, Haoyue
  • Zheng, Yuhang
  • Wang, Kunpeng
  • Duan, Yinying

Abstract

The present work presents a novel approach of employing two renewable energy sources for power and liquefied hydrogen cogeneration. Meanwhile, the main scheme comprises a biomass-fed (municipal solid waste) Brayton cycle using a digester, a geothermal-based flash binary cycle, and a Claude cycle for hydrogen liquefaction; the heat recovery is also performed through either an organic Rankine cycle (case A) or a Kalina cycle (case B) joint to the main scheme having two different configurations. Regarding the waste-to-energy framework designed for high performance, the system is comprehensively studied and optimized from the energy, exergy, and economic aspects. In this regard, thermodynamic- and economic-based sensitivity analysis, net present value method, and multi-objective grey wolf optimization are implemented; the multi-criteria optimization is performed in three scenarios containing exergy efficiency-NPV, exergy efficiency-liquefied hydrogen's unit cost, and NPV-liquefied hydrogen cost. According to the results, the first scenario offers higher exergetic efficiency; the third scenario also provides a better hydrogen cost. As a result, the better optimum exergetic efficiency and liquefied hydrogen cost are equal to 10.95% and 3.84 $/kg for case A, and 10.38% and 3.74 $/kg for case B.

Suggested Citation

  • Meng, Yue & Wu, Haoyue & Zheng, Yuhang & Wang, Kunpeng & Duan, Yinying, 2022. "Comparative analysis and multi-objective optimization of hydrogen liquefaction process using either organic Rankine or absorption power cycles driven by dual-source biomass fuel and geothermal energy," Energy, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222009811
    DOI: 10.1016/j.energy.2022.124078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222009811
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riaz, Amjad & Qyyum, Muhammad Abdul & Min, Seongwoong & Lee, Sanggyu & Lee, Moonyong, 2021. "Performance improvement potential of harnessing LNG regasification for hydrogen liquefaction process: Energy and exergy perspectives," Applied Energy, Elsevier, vol. 301(C).
    2. Farzad Hamrang & Afshar Shokri & S. M. Seyed Mahmoudi & Biuk Ehghaghi & Marc A. Rosen, 2020. "Performance Analysis of a New Electricity and Freshwater Production System Based on an Integrated Gasification Combined Cycle and Multi-Effect Desalination," Sustainability, MDPI, vol. 12(19), pages 1-29, September.
    3. Ahmadi, Samareh & Ghaebi, Hadi & Shokri, Afshar, 2019. "A comprehensive thermodynamic analysis of a novel CHP system based on SOFC and APC cycles," Energy, Elsevier, vol. 186(C).
    4. Sun, Faming & Zhou, Weisheng & Ikegami, Yasuyuki & Nakagami, Kenichi & Su, Xuanming, 2014. "Energy–exergy analysis and optimization of the solar-boosted Kalina cycle system 11 (KCS-11)," Renewable Energy, Elsevier, vol. 66(C), pages 268-279.
    5. Chen, Heng & Wang, Yihan & Li, Jiarui & Xu, Gang & Lei, Jing & Liu, Tong, 2022. "Thermodynamic analysis and economic assessment of an improved geothermal power system integrated with a biomass-fired cogeneration plant," Energy, Elsevier, vol. 240(C).
    6. Yari, Mortaza & Mehr, Ali Saberi & Mahmoudi, Seyed Mohammad Seyed & Santarelli, Massimo, 2016. "A comparative study of two SOFC based cogeneration systems fed by municipal solid waste by means of either the gasifier or digester," Energy, Elsevier, vol. 114(C), pages 586-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xianglong & Hu, Guang & Zeng, Zhi, 2023. "Performance characterization and multi-objective optimization of integrating a biomass-fueled brayton cycle, a kalina cycle, and an organic rankine cycle with a claude hydrogen liquefaction cycle," Energy, Elsevier, vol. 263(PB).
    2. Mohammed Alghamdi & Ibrahim Al-Kharsan & Sana Shahab & Abdullah Albaker & Reza Alayi & Laveet Kumar & Mamdouh El Haj Assad, 2023. "Investigation of Energy and Exergy of Geothermal Organic Rankine Cycle," Energies, MDPI, vol. 16(5), pages 1-13, February.
    3. Wang, Qiang & Yang, Yueling, 2023. "Biomass possessing toward an efficient arrangement using a novel framework of waste-to-useful products: MOPSO optimization and comprehensive thermodynamic and cost analyses," Energy, Elsevier, vol. 266(C).
    4. Faramarzi, Saman & Gharanli, Sajjad & Ramazanzade Mohammadi, Mohsen & Rahimtabar, Amin & J. Chamkha, Ali, 2023. "Energy, exergy, and economic analysis of an innovative hydrogen liquefaction cycle integrated into an absorption refrigeration system and geothermal energy," Energy, Elsevier, vol. 282(C).
    5. Teng, Junjie & Wang, Kai & Zhu, Shaolong & Bao, Shiran & Zhi, Xiaoqin & Zhang, Xiaobin & Qiu, Limin, 2023. "Comparative study on thermodynamic performance of hydrogen liquefaction processes with various ortho-para hydrogen conversion methods," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yi & Niroumandi, Hossein & Duan, Yinying, 2021. "Thermodynamic and economic analyses of a syngas-fueled high-temperature fuel cell with recycling processes in novel electricity and freshwater cogeneration plant," Energy, Elsevier, vol. 235(C).
    2. Liu, Xianglong & Hu, Guang & Zeng, Zhi, 2022. "Potential of biomass processing using digester in arrangement with a Brayton cycle, a Kalina cycle, and a multi-effect desalination; thermodynamic/environmental/financial study and MOPSO-based optimiz," Energy, Elsevier, vol. 261(PA).
    3. Liu, Xianglong & Hu, Guang & Zeng, Zhi, 2023. "Performance characterization and multi-objective optimization of integrating a biomass-fueled brayton cycle, a kalina cycle, and an organic rankine cycle with a claude hydrogen liquefaction cycle," Energy, Elsevier, vol. 263(PB).
    4. Lv, Xuefei & Lv, Ying & Zhu, Yiping, 2023. "Multi-variable study and MOPSO-based multi-objective optimization of a novel cogeneration plant using biomass fuel and geothermal energy: A complementary hybrid design," Energy, Elsevier, vol. 270(C).
    5. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    6. Soleymani, Elahe & Ghavami Gargari, Saeed & Ghaebi, Hadi, 2021. "Thermodynamic and thermoeconomic analysis of a novel power and hydrogen cogeneration cycle based on solid SOFC," Renewable Energy, Elsevier, vol. 177(C), pages 495-518.
    7. Azizi, Saeid & Shakibi, Hamid & Shokri, Afshar & Chitsaz, Ata & Yari, Mortaza, 2023. "Multi-aspect analysis and RSM-based optimization of a novel dual-source electricity and cooling cogeneration system," Applied Energy, Elsevier, vol. 332(C).
    8. Mao, Yi & Zhang, Lei & Wan, Li & Stanford, Russell J., 2022. "Proposal and assessment of a novel power and freshwater production system for the heat recovery of diesel engine," Energy, Elsevier, vol. 240(C).
    9. Hou, Rui & Zhang, Nachuan & Yang, Chengsheng & Zhao, Jing & Li, Peng & Sun, Bo, 2023. "A novel structure of natural gas, electricity, and methanol production using a combined reforming cycle: Integration of biogas upgrading, liquefied natural gas re-gasification, power plant, and methan," Energy, Elsevier, vol. 270(C).
    10. Su, Dawei, 2022. "Comprehensive thermodynamic and exergoeconomic analyses and multi-objective optimization of a compressed air energy storage hybridized with a parabolic trough solar collectors," Energy, Elsevier, vol. 244(PA).
    11. Wang, Erlei & Xia, Jiangying & Li, Jia & Sun, Xianke & Li, Hao, 2022. "Parameters exploration of SOFC for dynamic simulation using adaptive chaotic grey wolf optimization algorithm," Energy, Elsevier, vol. 261(PA).
    12. Tian, Cong & Su, Chang & Yang, Chao & Wei, Xiwen & Pang, Peng & Xu, Jianguo, 2023. "Exergetic and economic evaluation of a novel integrated system for cogeneration of power and freshwater using waste heat recovery of natural gas combined cycle," Energy, Elsevier, vol. 264(C).
    13. Cao, Yan & Dhahad, Hayder A. & Hussen, Hasanen M. & Anqi, Ali E. & Farouk, Naeim & Issakhov, Alibek, 2022. "Development and tri-objective optimization of a novel biomass to power and hydrogen plant: A comparison of fueling with biomass gasification or biomass digestion," Energy, Elsevier, vol. 238(PC).
    14. Gu, Hongfei & Liu, Jianzi & Zhou, Xingchen & Wu, Qiwei & Liu, Yaodong & Yu, Shuaixian & Qiu, Wenying & Xu, Jianguo, 2023. "Modelling of a novel electricity and methanol co-generation using heat recovery and CO2 capture: Comprehensive thermodynamic, economic, and environmental analyses," Energy, Elsevier, vol. 278(C).
    15. Bai, Hao & Luo, ShiHao & Zhao, Xijie & Zhao, Gen & Gao, Yang, 2022. "Comprehensive assessment of a green cogeneration system based on compressed air energy storage (CAES) and zeotropic mixtures," Energy, Elsevier, vol. 254(PA).
    16. Ji-chao, Yang & Sobhani, Behrooz, 2021. "Integration of biomass gasification with a supercritical CO2 and Kalina cycles in a combined heating and power system: A thermodynamic and exergoeconomic analysis," Energy, Elsevier, vol. 222(C).
    17. Wang, Qiang & Yang, Yueling, 2023. "Biomass possessing toward an efficient arrangement using a novel framework of waste-to-useful products: MOPSO optimization and comprehensive thermodynamic and cost analyses," Energy, Elsevier, vol. 266(C).
    18. Cheng, Cai & Cherian, Jacob & Sial, Muhammad Safdar & Zaman, Umer & Niroumandi, Hosein, 2021. "Performance assessment of a novel biomass-based solid oxide fuel cell power generation cycle; Economic analysis and optimization," Energy, Elsevier, vol. 224(C).
    19. Zhang, Mingming & Timoshin, Anton & Al-Ammar, Essam A. & Sillanpaa, Mika & Zhang, Guiju, 2023. "Power, cooling, freshwater, and hydrogen production system from a new integrated system working with the zeotropic mixture, using a flash-binary geothermal system," Energy, Elsevier, vol. 263(PD).
    20. Li, Kun & Ding, Yi-Zhe & Ai, Chen & Sun, Hongwei & Xu, Yi-Peng & Nedaei, Navid, 2022. "Multi-objective optimization and multi-aspect analysis of an innovative geothermal-based multi-generation energy system for power, cooling, hydrogen, and freshwater production," Energy, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222009811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.