IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v251y2022ics0360544222008283.html
   My bibliography  Save this article

Experimental investigation on thermal runaway propagation of 18,650 lithium-ion battery modules with two cathode materials at low pressure

Author

Listed:
  • Jia, Zhuangzhuang
  • Huang, Zonghou
  • Zhai, Hongju
  • Qin, Pen
  • Zhang, Yue
  • Li, Yawen
  • Wang, Qingsong

Abstract

As lithium-ion batteries (LIBs) are becoming more widely applied in aviation, growing attention has been paid to thermal runaway (TR) propagation due to its high complexity in unique low-pressure environments. This paper investigates the characteristics of TR propagation for the LiFePO4 and LiNi0.5Co0.2Mn0.3O2 modules at 95, 70, and 35 kPa. Some critical parameters in LIB modules, such as TR behavior, temperature, and propagation speed are analyzed. The results indicate that TR behaviors become weaker and the average maximum temperature of modules decreases 20–50 °C as the pressure decreases. The TR time of the LiFePO4 module decreases from 1218 to 603 s, when the pressure decreases from 95 to 35 kPa, but the LiNi0.5Co0.2Mn0.3O2 module increases from 33 to 151 s, indicating a reduction in the TR propagation time of 50.1% for the LiFePO4 module but an increase of 357.6% for the LiNi0.5Co0.2Mn0.3O2 module. As the pressure decreases, the mass losses of modules decrease, but the impact force of the LiNi0.5Co0.2Mn0.3O2 battery safety venting increases. Finally, a heat transfer model is established to explain the trend in TR influence at low pressure. This work clarifies the TR propagation characteristics of LIBs with two cathodes, which can help improve the safe use of LIB modules at low pressure.

Suggested Citation

  • Jia, Zhuangzhuang & Huang, Zonghou & Zhai, Hongju & Qin, Pen & Zhang, Yue & Li, Yawen & Wang, Qingsong, 2022. "Experimental investigation on thermal runaway propagation of 18,650 lithium-ion battery modules with two cathode materials at low pressure," Energy, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:energy:v:251:y:2022:i:c:s0360544222008283
    DOI: 10.1016/j.energy.2022.123925
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222008283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Huaibin & Wang, Shuyu & Feng, Xuning & Zhang, Xuan & Dai, Kangwei & Sheng, Jun & Zhao, Zhenyang & Du, Zhiming & Zhang, Zelin & Shen, Kai & Xu, Chengshan & Wang, Qinzheng & Sun, Xiaoyu & Li, Yanl, 2021. "An experimental study on the thermal characteristics of the Cell-To-Pack system," Energy, Elsevier, vol. 227(C).
    2. Huang, Zonghou & Shen, Ting & Jin, Kaiqiang & Sun, Jinhua & Wang, Qingsong, 2022. "Heating power effect on the thermal runaway characteristics of large-format lithium ion battery with Li(Ni1/3Co1/3Mn1/3)O2 as cathode," Energy, Elsevier, vol. 239(PA).
    3. Fu, Yangyang & Lu, Song & Shi, Long & Cheng, Xudong & Zhang, Heping, 2018. "Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure," Energy, Elsevier, vol. 161(C), pages 38-45.
    4. Qaderi, Alireza & Veysi, Farzad, 2022. "Investigation of a water-NEPCM cooling thermal management system for cylindrical 18650 Li-ion batteries," Energy, Elsevier, vol. 244(PA).
    5. Huang, Zonghou & Zhao, Chunpeng & Li, Huang & Peng, Wen & Zhang, Zheng & Wang, Qingsong, 2020. "Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes," Energy, Elsevier, vol. 205(C).
    6. Huang, Zonghou & Yu, Yin & Duan, Qiangling & Qin, Peng & Sun, Jinhua & Wang, Qingsong, 2022. "Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery," Applied Energy, Elsevier, vol. 325(C).
    7. Weng, Jingwen & Xiao, Changren & Ouyang, Dongxu & Yang, Xiaoqing & Chen, Mingyi & Zhang, Guoqing & Yuen, Richard Kwok Kit & Wang, Jian, 2022. "Mitigation effects on thermal runaway propagation of structure-enhanced phase change material modules with flame retardant additives," Energy, Elsevier, vol. 239(PC).
    8. Mao, Binbin & Liu, Chaoqun & Yang, Kai & Li, Shi & Liu, Pengjie & Zhang, Mingjie & Meng, Xiangdong & Gao, Fei & Duan, Qiangling & Wang, Qingsong & Sun, Jinhua, 2021. "Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Yao, Fang & He, Wenxuan & Wu, Youxi & Ding, Fei & Meng, Defang, 2022. "Remaining useful life prediction of lithium-ion batteries using a hybrid model," Energy, Elsevier, vol. 248(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Zhuangzhuang & Song, Laifeng & Mei, Wenxin & Yu, Yin & Meng, Xiangdong & Jin, Kaiqiang & Sun, Jinhua & Wang, Qingsong, 2022. "The preload force effect on the thermal runaway and venting behaviors of large-format prismatic LiFePO4 batteries," Applied Energy, Elsevier, vol. 327(C).
    2. Torregrosa, Antonio José & Broatch, Alberto & Olmeda, Pablo & Agizza, Luca, 2023. "A generalized equivalent circuit model for lithium-iron phosphate batteries," Energy, Elsevier, vol. 284(C).
    3. Zhang, Yue & Cheng, Siyuan & Mei, Wenxin & Jiang, Lihua & Jia, Zhuangzhuang & Cheng, Zhixiang & Sun, Jinhua & Wang, Qingsong, 2023. "Understanding of thermal runaway mechanism of LiFePO4 battery in-depth by three-level analysis," Applied Energy, Elsevier, vol. 336(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Zonghou & Yu, Yin & Duan, Qiangling & Qin, Peng & Sun, Jinhua & Wang, Qingsong, 2022. "Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery," Applied Energy, Elsevier, vol. 325(C).
    2. Jia, Zhuangzhuang & Song, Laifeng & Mei, Wenxin & Yu, Yin & Meng, Xiangdong & Jin, Kaiqiang & Sun, Jinhua & Wang, Qingsong, 2022. "The preload force effect on the thermal runaway and venting behaviors of large-format prismatic LiFePO4 batteries," Applied Energy, Elsevier, vol. 327(C).
    3. Zhou, Zhizuan & Li, Maoyu & Zhou, Xiaodong & Ju, Xiaoyu & Yang, Lizhong, 2023. "Investigating thermal runaway characteristics and trigger mechanism of the parallel lithium-ion battery," Applied Energy, Elsevier, vol. 349(C).
    4. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).
    5. Huang, Peifeng & Yao, Caixia & Mao, Binbin & Wang, Qingsong & Sun, Jinhua & Bai, Zhonghao, 2020. "The critical characteristics and transition process of lithium-ion battery thermal runaway," Energy, Elsevier, vol. 213(C).
    6. Huang, Zonghou & Shen, Ting & Jin, Kaiqiang & Sun, Jinhua & Wang, Qingsong, 2022. "Heating power effect on the thermal runaway characteristics of large-format lithium ion battery with Li(Ni1/3Co1/3Mn1/3)O2 as cathode," Energy, Elsevier, vol. 239(PA).
    7. Xuliang Tang & Heng Wan & Weiwen Wang & Mengxu Gu & Linfeng Wang & Linfeng Gan, 2023. "Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    8. Zhengxin, Jiang & Qin, Shi & Yujiang, Wei & Hanlin, Wei & Bingzhao, Gao & Lin, He, 2021. "An Immune Genetic Extended Kalman Particle Filter approach on state of charge estimation for lithium-ion battery," Energy, Elsevier, vol. 230(C).
    9. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Ouyang, Nan & Zhang, Wencan & Yin, Xiuxing & Li, Xingyao & Xie, Yi & He, Hancheng & Long, Zhuoru, 2023. "A data-driven method for predicting thermal runaway propagation of battery modules considering uncertain conditions," Energy, Elsevier, vol. 273(C).
    11. Hong Shi & Mengmeng Cheng & Yi Feng & Chenghui Qiu & Caiyue Song & Nenglin Yuan & Chuanzhi Kang & Kaijie Yang & Jie Yuan & Yonghao Li, 2023. "Thermal Management Techniques for Lithium-Ion Batteries Based on Phase Change Materials: A Systematic Review and Prospective Recommendations," Energies, MDPI, vol. 16(2), pages 1-23, January.
    12. Lingyu Meng & Guofa Wang & Khay Wai See & Yunpeng Wang & Yong Zhang & Caiyun Zang & Rulin Zhou & Bin Xie, 2022. "Large-Scale Li-Ion Battery Research and Application in Mining Industry," Energies, MDPI, vol. 15(11), pages 1-31, May.
    13. Shen, Dongxu & Wu, Lifeng & Kang, Guoqing & Guan, Yong & Peng, Zhen, 2021. "A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current," Energy, Elsevier, vol. 218(C).
    14. Wei, Meng & Balaya, Palani & Ye, Min & Song, Ziyou, 2022. "Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis," Energy, Elsevier, vol. 261(PA).
    15. Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
    16. Yongsheng Shi & Tailin Li & Leicheng Wang & Hongzhou Lu & Yujun Hu & Beichen He & Xinran Zhai, 2023. "A Method for Predicting the Life of Lithium-Ion Batteries Based on Successive Variational Mode Decomposition and Optimized Long Short-Term Memory," Energies, MDPI, vol. 16(16), pages 1-16, August.
    17. Cao, Yanfang & Wang, Kuo & Wang, Zhirong & Wang, Junling & Yang, Yun & Xu, Xiangyu, 2023. "Utilization of liquid nitrogen as efficient inhibitor upon thermal runaway of 18650 lithium ion battery in open space," Renewable Energy, Elsevier, vol. 206(C), pages 1097-1105.
    18. Li, Yalun & Gao, Xinlei & Feng, Xuning & Ren, Dongsheng & Li, Yan & Hou, Junxian & Wu, Yu & Du, Jiuyu & Lu, Languang & Ouyang, Minggao, 2022. "Battery eruption triggered by plated lithium on an anode during thermal runaway after fast charging," Energy, Elsevier, vol. 239(PB).
    19. Guo, Chao & Liu, Huan-ling & Guo, Qi & Shao, Xiao-dong & Zhu, Ming-liang, 2022. "Investigations on a novel cold plate achieved by topology optimization for lithium-ion batteries," Energy, Elsevier, vol. 261(PA).
    20. Hongxu Li & Qing Gao & Yan Wang, 2023. "Experimental Investigation of the Thermal Runaway Propagation Characteristics and Thermal Failure Prediction Parameters of Six-Cell Lithium-Ion Battery Modules," Energies, MDPI, vol. 16(13), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:251:y:2022:i:c:s0360544222008283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.