IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v250y2022ics0360544222007058.html
   My bibliography  Save this article

Hybridization of Taguchi method and genetic algorithm to optimize a PVT in different Moroccan climatic zones

Author

Listed:
  • Ben Seddik, Z.
  • Ben Taher, M.A.
  • Laknizi, A.
  • Ahachad, M.
  • Bahraoui, F.
  • Mahdaoui, M.

Abstract

Using a hybrid approach of Taguchi's method and genetic algorithm, an optimization study was carried out to improve the electrical and thermal efficiencies of a photovoltaic thermal water-based collector (PVT) under the weather conditions of the climate zones of Morocco. First, a mathematical model was developed and validated to predict both of the thermal and the electrical performance of the panel under different weather conditions. Then, The Taguchi method was used to reduce the optimization size where the parameters with the highest influence in the panel performance were identified. Bi-objective optimizations were carried out for the six climate zones using the genetic algorithm, where the electrical and the thermal efficiencies were the fitness functions. In order to assess the improvement in the PVT panel with optimized parameters performance, a PVT baseline design with un-optimized parameters was chosen, and a comparison study was conducted based on monthly, annually energy and environmental performance. The results showed that the PVT panel with the optimized parameters is capable of producing higher average monthly energy almost in the six climate zones, and the annual gain achieved varies from 15.5% to 19% depending on the climate zone. This allows higher CO2 emissions mitigations compared to un-optimized PVT.

Suggested Citation

  • Ben Seddik, Z. & Ben Taher, M.A. & Laknizi, A. & Ahachad, M. & Bahraoui, F. & Mahdaoui, M., 2022. "Hybridization of Taguchi method and genetic algorithm to optimize a PVT in different Moroccan climatic zones," Energy, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:energy:v:250:y:2022:i:c:s0360544222007058
    DOI: 10.1016/j.energy.2022.123802
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222007058
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hazami, Majdi & Riahi, Ali & Mehdaoui, Farah & Nouicer, Omeima & Farhat, Abdelhamid, 2016. "Energetic and exergetic performances analysis of a PV/T (photovoltaic thermal) solar system tested and simulated under to Tunisian (North Africa) climatic conditions," Energy, Elsevier, vol. 107(C), pages 78-94.
    2. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    3. Fu, Zaiguo & Li, Yongwei & Liang, Xiaotian & Lou, Shang & Qiu, Zhongzhu & Cheng, Zhiyuan & Zhu, Qunzhi, 2021. "Experimental investigation on the enhanced performance of a solar PVT system using micro-encapsulated PCMs," Energy, Elsevier, vol. 228(C).
    4. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).
    5. Bouaichi, Abdellatif & Alami Merrouni, Ahmed & Hajjaj, Charaf & Messaoudi, Choukri & Ghennioui, Abdellatif & Benlarabi, Ahmed & Ikken, Badr & El Amrani, Aumeur & Zitouni, Houssin, 2019. "In-situ evaluation of the early PV module degradation of various technologies under harsh climatic conditions: The case of Morocco," Renewable Energy, Elsevier, vol. 143(C), pages 1500-1518.
    6. Brottier, Laetitia & Bennacer, Rachid, 2020. "Thermal performance analysis of 28 PVT solar domestic hot water installations in Western Europe," Renewable Energy, Elsevier, vol. 160(C), pages 196-210.
    7. El Mghouchi, Y. & Ajzoul, T. & El Bouardi, A., 2016. "Prediction of daily solar radiation intensity by day of the year in twenty-four cities of Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 823-831.
    8. Herrando, María & Markides, Christos N. & Hellgardt, Klaus, 2014. "A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance," Applied Energy, Elsevier, vol. 122(C), pages 288-309.
    9. Wang, Kai & Herrando, María & Pantaleo, Antonio M. & Markides, Christos N., 2019. "Technoeconomic assessments of hybrid photovoltaic-thermal vs. conventional solar-energy systems: Case studies in heat and power provision to sports centres," Applied Energy, Elsevier, vol. 254(C).
    10. Kousksou, T. & Allouhi, A. & Belattar, M. & Jamil, A. & El Rhafiki, T. & Zeraouli, Y., 2015. "Morocco's strategy for energy security and low-carbon growth," Energy, Elsevier, vol. 84(C), pages 98-105.
    11. Fabrizio Ascione & Nicola Bianco & Rosa Francesca De Masi & Gerardo Maria Mauro & Giuseppe Peter Vanoli, 2015. "Design of the Building Envelope: A Novel Multi-Objective Approach for the Optimization of Energy Performance and Thermal Comfort," Sustainability, MDPI, vol. 7(8), pages 1-28, August.
    12. Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2019. "Development and applications of photovoltaic–thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 249-265.
    13. Obalanlege, Mustapha A. & Mahmoudi, Yasser & Douglas, Roy & Ebrahimnia-Bajestan, Ehsan & Davidson, John & Bailie, David, 2020. "Performance assessment of a hybrid photovoltaic-thermal and heat pump system for solar heating and electricity," Renewable Energy, Elsevier, vol. 148(C), pages 558-572.
    14. Yazdanifard, Farideh & Ebrahimnia-Bajestan, Ehsan & Ameri, Mehran, 2016. "Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime," Renewable Energy, Elsevier, vol. 99(C), pages 295-306.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ben Taher, M.A. & Pelay, U. & Russeil, S. & Bougeard, D., 2023. "A novel design to optimize the optical performances of parabolic trough collector using Taguchi, ANOVA and grey relational analysis methods," Renewable Energy, Elsevier, vol. 216(C).
    2. Chdil, O. & Bikerouin, M. & Balli, M. & Mounkachi, O., 2023. "New horizons in magnetic refrigeration using artificial intelligence," Applied Energy, Elsevier, vol. 335(C).
    3. Afzal, Asif & Buradi, Abdulrajak & Jilte, Ravindra & Shaik, Saboor & Kaladgi, Abdul Razak & Arıcı, Muslum & Lee, Chew Tin & Nižetić, Sandro, 2023. "Optimizing the thermal performance of solar energy devices using meta-heuristic algorithms: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Dudul & Kalita, Pankaj & Roy, Omkar, 2018. "Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 111-130.
    2. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    3. Iván Acosta-Pazmiño & Carlos Rivera-Solorio & Miguel Gijón-Rivera, 2020. "Energetic and Economic Analyses of an LCPV/T Solar Hybrid Plant for a Sports Center Building in Mexico," Energies, MDPI, vol. 13(21), pages 1-17, October.
    4. Taqi Al-Najjar, Hussein M. & Mahdi, Jasim M., 2022. "Novel mathematical modeling, performance analysis, and design charts for the typical hybrid photovoltaic/phase-change material (PV/PCM) system," Applied Energy, Elsevier, vol. 315(C).
    5. Obalanlege, Mustapha A. & Xu, Jingyuan & Markides, Christos N. & Mahmoudi, Yasser, 2022. "Techno-economic analysis of a hybrid photovoltaic-thermal solar-assisted heat pump system for domestic hot water and power generation," Renewable Energy, Elsevier, vol. 196(C), pages 720-736.
    6. Abbas, Sajid & Zhou, Jinzhi & Hassan, Atazaz & Yuan, Yanping & Yousuf, Saima & Sun, Yafen & Zeng, Chao, 2023. "Economic evaluation and annual performance analysis of a novel series-coupled PV/T and solar TC with solar direct expansion heat pump system: An experimental and numerical study," Renewable Energy, Elsevier, vol. 204(C), pages 400-420.
    7. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).
    8. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    9. Obalanlege, Mustapha A. & Mahmoudi, Yasser & Douglas, Roy & Bailie, David & Davidson, John, 2020. "Experimental assessment of short cycling in a hybrid photovoltaic-thermal heat pump system," Applied Energy, Elsevier, vol. 268(C).
    10. Herrando, María & Ramos, Alba & Zabalza, Ignacio & Markides, Christos N., 2019. "A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors," Applied Energy, Elsevier, vol. 235(C), pages 1583-1602.
    11. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Hassan, Atazaz & Abbas, Sajid & Yousuf, Saima & Abbas, Fakhar & Amin, N.M. & Ali, Shujaat & Shahid Mastoi, Muhammad, 2023. "An experimental and numerical study on the impact of various parameters in improving the heat transfer performance characteristics of a water based photovoltaic thermal system," Renewable Energy, Elsevier, vol. 202(C), pages 499-512.
    13. Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.
    14. Chen, J.F. & Zhang, L. & Dai, Y.J., 2018. "Performance analysis and multi-objective optimization of a hybrid photovoltaic/thermal collector for domestic hot water application," Energy, Elsevier, vol. 143(C), pages 500-516.
    15. Otanicar, Todd P. & Theisen, Stephen & Norman, Tyler & Tyagi, Himanshu & Taylor, Robert A., 2015. "Envisioning advanced solar electricity generation: Parametric studies of CPV/T systems with spectral filtering and high temperature PV," Applied Energy, Elsevier, vol. 140(C), pages 224-233.
    16. Herrando, M. & Coca-Ortegón, A. & Guedea, I. & Fueyo, N., 2023. "Experimental validation of a solar system based on hybrid photovoltaic-thermal collectors and a reversible heat pump for the energy provision in non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    17. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    18. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    19. Shahsavar, Amin & Alwaeli, Ali H.A. & Azimi, Neda & Rostami, Shirin & Sopian, Kamaruzzaman & Arıcı, Müslüm & Estellé, Patrice & Nižetić, Sandro & Kasaeian, Alibakhsh & Ali, Hafiz Muhammad & Ma, Zhenju, 2022. "Exergy studies in water-based and nanofluid-based photovoltaic/thermal collectors: Status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Nižetić, S. & Duić, N. & Papadopulos, A.M. & Tina, G.M. & Grubišić-Čabo, F., 2015. "Energy efficiency evaluation of a hybrid energy system for building applications in a Mediterranean climate and its feasibility aspect," Energy, Elsevier, vol. 90(P1), pages 1171-1179.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:250:y:2022:i:c:s0360544222007058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.