IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v246y2022ics0360544222003231.html
   My bibliography  Save this article

Performance evaluation of a novel design for the waste heat recovery of a cement plant incorporating a coal-fired power plant

Author

Listed:
  • Chen, Heng
  • Wang, Yihan
  • An, Liuming
  • Xu, Gang
  • Zhu, Xin
  • Liu, Wenyi
  • Lei, Jing

Abstract

A novel waste heat recovery system (WHRS) for cement plants is proposed in this study. The new WHRS is integrated with the heat regeneration process of a coal-fired power plant. The thermal energy recovered from the exhaust gases of a cement plant is poured into the steam cycle of the coal-fired power plant. Consequently, the performance of the waste heat utilization process can be significantly improved. The hybrid design was thermodynamically and economically assessed based on a typical cement plant and a coal-fired power plant. The results indicated that while the thermal energy recovered from the exhaust gases of the cement plant is constant, the new WHRS can produce 6.75 MW more net power than the conventional one. Meanwhile, the power generation efficiency and net thermal efficiency of the WHRS are increased by 18.11% and 8.11%, respectively. The net present value of the WHRS can be promoted by 230.42% by implementing hybridization. Furthermore, energy and exergy analyses were undertaken to investigate the root cause of performance enhancement due to the proposal. The results confirmed that the novel design is advantageous from the perspectives of both thermodynamics and economics.

Suggested Citation

  • Chen, Heng & Wang, Yihan & An, Liuming & Xu, Gang & Zhu, Xin & Liu, Wenyi & Lei, Jing, 2022. "Performance evaluation of a novel design for the waste heat recovery of a cement plant incorporating a coal-fired power plant," Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222003231
    DOI: 10.1016/j.energy.2022.123420
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222003231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moreira, L.F. & Arrieta, F.R.P., 2019. "Thermal and economic assessment of organic Rankine cycles for waste heat recovery in cement plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Ibrahim, Thamir K. & Mohammed, Mohammed Kamil & Awad, Omar I. & Abdalla, Ahmed N. & Basrawi, Firdaus & Mohammed, Marwah N. & Najafi, G. & Mamat, Rizalman, 2018. "A comprehensive review on the exergy analysis of combined cycle power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 835-850.
    4. Chen, Heng & Zhang, Meiyan & Xue, Kai & Xu, Gang & Yang, Yongping & Wang, Zepeng & Liu, Wenyi & Liu, Tong, 2020. "An innovative waste-to-energy system integrated with a coal-fired power plant," Energy, Elsevier, vol. 194(C).
    5. Muhammad, Hafiz Ali & Lee, Beomjoon & Cho, Junhyun & Rehman, Zabdur & Choi, Bongsu & Cho, Jongjae & Roh, Chulwoo & Lee, Gilbong & Imran, Muhammad & Baik, Young-Jin, 2021. "Application of advanced exergy analysis for optimizing the design of carbon dioxide pressurization system," Energy, Elsevier, vol. 228(C).
    6. Karellas, S. & Leontaritis, A.-D. & Panousis, G. & Bellos, E. & Kakaras, E., 2013. "Energetic and exergetic analysis of waste heat recovery systems in the cement industry," Energy, Elsevier, vol. 58(C), pages 147-156.
    7. Liu, Junxia, 2019. "China's renewable energy law and policy: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 212-219.
    8. Zhang, Jian & Zhang, Wei & Song, Qi & Li, Xin & Ye, Xuanting & Liu, Yu & Xue, Yawei, 2020. "Can energy saving policies drive firm innovation behaviors? - Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    9. Ma, Hongting & Du, Na & Zhang, Zeyu & Lyu, Fan & Deng, Na & Li, Cong & Yu, Shaojie, 2017. "Assessment of the optimum operation conditions on a heat pipe heat exchanger for waste heat recovery in steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 50-60.
    10. Wang, Huarong & Xu, Jinliang & Yang, Xufei & Miao, Zheng & Yu, Chao, 2015. "Organic Rankine cycle saves energy and reduces gas emissions for cement production," Energy, Elsevier, vol. 86(C), pages 59-73.
    11. Ghalandari, Vahab & Majd, Mahdieh Mozaffari & Golestanian, Amir, 2019. "Energy audit for pyro-processing unit of a new generation cement plant and feasibility study for recovering waste heat: A case study," Energy, Elsevier, vol. 173(C), pages 833-843.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Bo & Wang, Shun-sen, 2022. "Thermodynamic analysis and optimization of a hybrid cascade supercritical carbon dioxide cycle for waste heat recovery," Energy, Elsevier, vol. 259(C).
    2. Ma, Hongqiang & Xie, Yue & Duan, Kerun & Song, Xingpeng & Ding, Ruixiang & Hou, Caiqin, 2022. "Dynamic control method of flue gas heat transfer system in the waste heat recovery process," Energy, Elsevier, vol. 259(C).
    3. Zhang, Zumeng & Ding, Liping & Wang, Chaofan & Dai, Qiyao & Shi, Yin & Zhao, Yujia & Zhu, Yuxuan, 2022. "Do operation and maintenance contracts help photovoltaic poverty alleviation power stations perform better?," Energy, Elsevier, vol. 259(C).
    4. Marenco-Porto, Carlos A. & Fierro, José J. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Potential savings in the cement industry using waste heat recovery technologies," Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marenco-Porto, Carlos A. & Fierro, José J. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Potential savings in the cement industry using waste heat recovery technologies," Energy, Elsevier, vol. 279(C).
    2. Nami, Hossein & Anvari-Moghaddam, Amjad, 2020. "Small-scale CCHP systems for waste heat recovery from cement plants: Thermodynamic, sustainability and economic implications," Energy, Elsevier, vol. 192(C).
    3. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    4. Aridi, Rima & Faraj, Jalal & Ali, Samer & Lemenand, Thierry & khaled, Mahmoud, 2022. "A comprehensive review on hybrid heat recovery systems: Classifications, applications, pros and cons, and new systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Jung, Chung Woo & Song, Joo Young & Kang, Yong Tae, 2018. "Study on ammonia/water hybrid absorption/compression heat pump cycle to produce high temperature process water," Energy, Elsevier, vol. 145(C), pages 458-467.
    6. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    7. Li, Pengcheng & Cao, Qing & Li, Jing & Lin, Haiwei & Wang, Yandong & Gao, Guangtao & Pei, Gang & Jie, Desuan & Liu, Xunfen, 2021. "An innovative approach to recovery of fluctuating industrial exhaust heat sources using cascade Rankine cycle and two-stage accumulators," Energy, Elsevier, vol. 228(C).
    8. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    9. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    10. Mikulčić, Hrvoje & Vujanović, Milan & Ashhab, Moh'd Sami & Duić, Neven, 2014. "Large eddy simulation of a two-phase reacting swirl flow inside a cement cyclone," Energy, Elsevier, vol. 75(C), pages 89-96.
    11. Liu, Yan & Yang, Jian & Wang, Jin & Cheng, Zhi-long & Wang, Qiu-wang, 2014. "Energy and exergy analysis for waste heat cascade utilization in sinter cooling bed," Energy, Elsevier, vol. 67(C), pages 370-380.
    12. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    13. Anufriev, I.S. & Kopyev, E.P. & Alekseenko, S.V. & Sharypov, O.V. & Vigriyanov, M.S., 2022. "New ecology safe waste-to-energy technology of liquid fuel combustion with superheated steam," Energy, Elsevier, vol. 250(C).
    14. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    15. Xue, Xiaodi & Guo, Cong & Du, Xiaoze & Yang, Lijun & Yang, Yongping, 2015. "Thermodynamic analysis and optimization of a two-stage organic Rankine cycle for liquefied natural gas cryogenic exergy recovery," Energy, Elsevier, vol. 83(C), pages 778-787.
    16. Samuel Asumadu Sarkodie & Ahdi Noomen Ajmi & Festus Fatai Adedoyin & Phebe Asantewaa Owusu, 2021. "Econometrics of Anthropogenic Emissions, Green Energy-Based Innovations, and Energy Intensity across OECD Countries," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    17. Fan, Weiyang & Hao, Yu, 2020. "An empirical research on the relationship amongst renewable energy consumption, economic growth and foreign direct investment in China," Renewable Energy, Elsevier, vol. 146(C), pages 598-609.
    18. Ekaterina S. Titova, 2019. "Biofuel Application as a Factor of Sustainable Development Ensuring: The Case of Russia," Energies, MDPI, vol. 12(20), pages 1-30, October.
    19. Lee, Chien-Chiang & Wang, Fuhao & Chang, Yu-Fang, 2023. "Does green finance promote renewable energy? Evidence from China," Resources Policy, Elsevier, vol. 82(C).
    20. Nina Su & Zhuqin Shi & Xianqi Zhu & Yunsheng Xin, 2021. "An Evolutionary Game Model of Collaborative Innovation Between Enterprises and Colleges Under Government Participation of China," SAGE Open, , vol. 11(1), pages 21582440219, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222003231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.