IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v242y2022ics0360544221032126.html
   My bibliography  Save this article

Systematic investigations on charging/discharging performances improvement of phase change materials by structured network fins

Author

Listed:
  • Peng, Benli
  • Sheng, Wenlong
  • He, Zhengyu
  • Wang, Hong
  • Su, Fengmin
  • Wang, Shikuan

Abstract

Improving the effectiveness of solar energy utilization and waste heat recovery by ameliorating charging/discharging performances of latent heat thermal energy storage (LHTES) unit, is essential to reduce fossil fuel consumption thus achieve the goal of carbon neutralization. Structured network fins are developed to improve charging/discharging performances of paraffin wax-based LHTES unit. Simulations are conducted by integrating enthalpy-porosity method and Ansys Fluent software package. Influences of horizontal fin number nh and distance d between bottom horizontal fin and bottom wall of enclosure on charging/discharging performances are discussed. Results illustrate that when nh increases from one to six, the maximum enhancement factor for charging approaches to 1.6921 but it decreases to 1.0590 when nh increases from six to ten. The corresponding maximum enhancement factors for discharging are 10.5571 and 1.0382, respectively. An appropriate nh exists. Moreover, an optimum d exists when nh ≤ 3 for charging and when nh ≤ 6 for discharging. Charging/discharging rates are further enhanced by 10.38% and 13.84% respectively through optimizing d. When nh > 3 for charging and nh > 6 for discharging, a smaller d is more profitable. Results suggest nh = 6 and d ≤ 3 mm are appropriate to achieve satisfactory enhancements for charging/discharging performances of paraffin wax-based LHTES simultaneously and introduce minimum extra manufacture complexity.

Suggested Citation

  • Peng, Benli & Sheng, Wenlong & He, Zhengyu & Wang, Hong & Su, Fengmin & Wang, Shikuan, 2022. "Systematic investigations on charging/discharging performances improvement of phase change materials by structured network fins," Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032126
    DOI: 10.1016/j.energy.2021.122963
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221032126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122963?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vargas-López, R. & Xamán, J. & Hernández-Pérez, I. & Arce, J. & Zavala-Guillén, I. & Jiménez, M.J. & Heras, M.R., 2019. "Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance," Energy, Elsevier, vol. 170(C), pages 683-708.
    2. Zhang, Xiyao & Niu, Jianlei & Wu, Jian-Yong, 2019. "Development and characterization of novel and stable silicon nanoparticles-embedded PCM-in-water emulsions for thermal energy storage," Applied Energy, Elsevier, vol. 238(C), pages 1407-1416.
    3. Li, Dacheng & Wang, Jihong & Ding, Yulong & Yao, Hua & Huang, Yun, 2019. "Dynamic thermal management for industrial waste heat recovery based on phase change material thermal storage," Applied Energy, Elsevier, vol. 236(C), pages 1168-1182.
    4. Peng, Benli & Huang, Guanghan & Wang, Pengtao & Li, Wenming & Chang, Wei & Ma, Jiaxuan & Li, Chen, 2019. "Effects of thermal conductivity and density on phase change materials-based thermal energy storage systems," Energy, Elsevier, vol. 172(C), pages 580-591.
    5. Singh, Preeti & Khanna, Sourav & Becerra, Victor & Newar, Sanjeev & Sharma, Vashi & Mallick, Tapas K. & Hutchinson, David & Radulovic, Jovana & Khusainov, Rinat, 2020. "Power improvement of finned solar photovoltaic phase change material system," Energy, Elsevier, vol. 193(C).
    6. Faraj, Khaireldin & Khaled, Mahmoud & Faraj, Jalal & Hachem, Farouk & Castelain, Cathy, 2020. "Phase change material thermal energy storage systems for cooling applications in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    8. Wang, Fangxian & Cao, Jiahao & Ling, Ziye & Zhang, Zhengguo & Fang, Xiaoming, 2020. "Experimental and simulative investigations on a phase change material nano-emulsion-based liquid cooling thermal management system for a lithium-ion battery pack," Energy, Elsevier, vol. 207(C).
    9. Bazri, Shahab & Badruddin, Irfan Anjum & Naghavi, Mohammad Sajad & Bahiraei, Mehdi, 2018. "A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles," Renewable Energy, Elsevier, vol. 118(C), pages 761-778.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuekuan & Zheng, Siqian & Liu, Zhengxuan & Wen, Tao & Ding, Zhixiong & Yan, Jun & Zhang, Guoqiang, 2020. "Passive and active phase change materials integrated building energy systems with advanced machine-learning based climate-adaptive designs, intelligent operations, uncertainty-based analysis and optim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    3. Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    4. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).
    5. Liang, Haobin & Liu, Liu & Zhong, Ziwen & Gan, Yixiang & Wu, Jian-Yong & Niu, Jianlei, 2022. "Towards idealized thermal stratification in a novel phase change emulsion storage tank," Applied Energy, Elsevier, vol. 310(C).
    6. Cabaleiro, D. & Agresti, F. & Fedele, L. & Barison, S. & Hermida-Merino, C. & Losada-Barreiro, S. & Bobbo, S. & Piñeiro, M.M., 2022. "Review on phase change material emulsions for advanced thermal management: Design, characterization and thermal performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Qin, Zhen & Ji, Chenzhen & Low, Zheng Hua & Tong, Wei & Wu, Chenlong & Duan, Fei, 2022. "Geometry effect of phase change material container on waste heat recovery enhancement," Applied Energy, Elsevier, vol. 327(C).
    8. Elsewify, O. & Souri, M. & Esfahani, M.N. & Hosseinzadeh, E. & Jabbari, M., 2021. "A new method for internal cooling of a large format lithium-ion battery pouch cell," Energy, Elsevier, vol. 225(C).
    9. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
    10. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control for Demand- and Market-Responsive building energy management by leveraging active latent heat storage," Applied Energy, Elsevier, vol. 327(C).
    11. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    12. Li, Han & Li, Jinchao & Kong, Xiangfei & Long, Hao & Yang, Hua & Yao, Chengqiang, 2020. "A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance," Energy, Elsevier, vol. 201(C).
    13. Evdoxia Paroutoglou & Peter Fojan & Leonid Gurevich & Göran Hultmark & Alireza Afshari, 2021. "Thermal Analysis of Organic and Nanoencapsulated Electrospun Phase Change Materials," Energies, MDPI, vol. 14(4), pages 1-15, February.
    14. Ye, Yang & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2020. "Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank," Applied Energy, Elsevier, vol. 278(C).
    15. Xu, Tianhao & Humire, Emma Nyholm & Trevisan, Silvia & Ignatowicz, Monika & Sawalha, Samer & Chiu, Justin NW., 2022. "Experimental and numerical investigation of a latent heat thermal energy storage unit with ellipsoidal macro-encapsulation," Energy, Elsevier, vol. 238(PB).
    16. Pilar Mercader-Moyano & Manuel Ramos-Martín, 2020. "Comprehensive Sustainability Assessment of Regenerative Actions on the Thermal Envelope of Obsolete Buildings under Climate Change Perspective," Sustainability, MDPI, vol. 12(14), pages 1-40, July.
    17. Odenthal, Christian & Steinmann, Wolf-Dieter & Zunft, Stefan, 2020. "Analysis of a horizontal flow closed loop thermal energy storage system in pilot scale for high temperature applications – Part II: Numerical investigation," Applied Energy, Elsevier, vol. 263(C).
    18. Sujit Kumar & Om Prakash, 2022. "Improving the Single-Slope Solar Still Performance Using Solar Air Heater with Phase Change Materials," Energies, MDPI, vol. 15(21), pages 1-15, October.
    19. Abdelhakim Hassabou & Rima J. Isaifan, 2022. "Simulation of Phase Change Material Absorbers for Passive Cooling of Solar Systems," Energies, MDPI, vol. 15(24), pages 1-17, December.
    20. Jacek Kropiwnicki & Mariusz Furmanek & Andrzej Rogala, 2021. "Modular Approach for Modelling Warming up Process in Water Installations with Flow-Regulating Elements," Energies, MDPI, vol. 14(15), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.