IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v242y2022ics0360544221027870.html
   My bibliography  Save this article

Molecular simulation for physisorption characteristics of O2 in low-rank coals

Author

Listed:
  • Tan, Bo
  • Cheng, Gang
  • Fu, Shuhui
  • Wang, Haiyan
  • Li, Zixu
  • Zhang, Xuedong

Abstract

In this paper, systematic research of the physisorption characteristics of oxygen in low-rank coals had been carried out using the Grand Canonical Monte Carlo (GCMC) and the Density Functional Theory (DFT) methods based on the assumption of no chemisorption. Firstly, the surface molecular structure parameters of five different low-rank coals were determined, the coal molecules and their unit cells structure were constructed; Secondly, Oxygen physisorption behaviour in coal molecular unit cells was simulated based on the GCMC and the Molecular Dynamics (MD) method; Finally, the physisorption parameters for oxygen physisorption at each adsorption site were simulated based on the DFT. The results show that the microporous structure of coal molecules is positively correlated with the total physisorption amount of oxygen and has an effect on the physisorption heat; oxygen is gathered around aliphatic hydrocarbons, the mutual distances of methyl and methylene to oxygen were 3.57 Å and 3.81 Å, respectively; the adsorption capacity of the low-rank coal molecules is effected by aromatic, oxygenated aliphatic hydrocarbons, and the degree of condensation of polycyclic aromatic hydrocarbons, the physisorption energy of the aromatic ring, hydroxyl and ether bonds to oxygen were −3.4790 kcal/mol, −2.9933 kcal/mol and −2.9663 kcal/mol respectively. This research will enable us to better understand the physisorption mechanism of oxygen in low-rank coals.

Suggested Citation

  • Tan, Bo & Cheng, Gang & Fu, Shuhui & Wang, Haiyan & Li, Zixu & Zhang, Xuedong, 2022. "Molecular simulation for physisorption characteristics of O2 in low-rank coals," Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221027870
    DOI: 10.1016/j.energy.2021.122538
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221027870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122538?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Haixiang & Li, Xiaochun & Fang, Zhiming & Wei, Ning & Li, Qianshu, 2010. "Small-molecule gas sorption and diffusion in coal: Molecular simulation," Energy, Elsevier, vol. 35(7), pages 2939-2944.
    2. Bai, Yang & Lin, Hai-Fei & Li, Shu-Gang & Yan, Min & Long, Hang, 2021. "Molecular simulation of N2 and CO2 injection into a coal model containing adsorbed methane at different temperatures," Energy, Elsevier, vol. 219(C).
    3. Kim, Young Jun & Nam, Young Suk & Kang, Yong Tae, 2015. "Study on a numerical model and PSA (pressure swing adsorption) process experiment for CH4/CO2 separation from biogas," Energy, Elsevier, vol. 91(C), pages 732-741.
    4. Liu, Lei & Jin, Jing & Lin, Yuyu & Hou, Fengxiao & Li, Shengjuan, 2016. "The effect of calcium on nitric oxide heterogeneous adsorption on carbon: A first-principles study," Energy, Elsevier, vol. 106(C), pages 212-220.
    5. Cao Wang, 2021. "Monte Carlo Simulation," Springer Series in Reliability Engineering, in: Structural Reliability and Time-Dependent Reliability, chapter 0, pages 105-163, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Bingnan & Pan, Hongyu & Pang, Mingkun & Pan, Mingyue & Zhang, Hang & Zhang, Tianjun, 2023. "Molecular simulation of CH4 adsorption characteristics in bituminous coal after different functional group fractures," Energy, Elsevier, vol. 282(C).
    2. Li, Shugang & Yan, Dongjie & Yan, Min & Bai, Yang & Zhao, Bo & Long, Hang & Lin, Haifei, 2023. "Molecular simulation of alkyl glycoside surfactants with different concentrations inhibiting methane diffusion in coal," Energy, Elsevier, vol. 263(PB).
    3. Haijian Li & Qiang Zeng & Jianhong Kang & Gang Cheng & Jianwei Cheng & Shengcheng Wang, 2023. "A Comparative Investigation of the Adsorption Characteristics of CO 2 , O 2 and N 2 in Different Ranks of Coal," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    4. Li, Jiawei & Sun, Chenhao, 2022. "Molecular insights on competitive adsorption and enhanced displacement effects of CO2/CH4 in coal for low-carbon energy technologies," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Huang & Yao, Desong & Yang, Bowen & Li, Huashi & Guo, Ping & Du, Jianfen & Wang, Jian & Yang, Shuokong & Wen, Lianhui, 2022. "Experimental investigation on the mechanism of low permeability natural gas extraction accompanied by carbon dioxide sequestration," Energy, Elsevier, vol. 253(C).
    2. Li, Shugang & Yan, Dongjie & Yan, Min & Bai, Yang & Zhao, Bo & Long, Hang & Lin, Haifei, 2023. "Molecular simulation of alkyl glycoside surfactants with different concentrations inhibiting methane diffusion in coal," Energy, Elsevier, vol. 263(PB).
    3. Li, Jiawei & Sun, Chenhao, 2022. "Molecular insights on competitive adsorption and enhanced displacement effects of CO2/CH4 in coal for low-carbon energy technologies," Energy, Elsevier, vol. 261(PB).
    4. Liu, Lei & Jin, Jing & Hou, Fengxiao & Li, Shengjuan & Lee, Chang-Ha, 2017. "Catalytic effects of calcium and potassium on a curved char surface in fuel reburning: A first-principles study on the adsorption of nitric oxide on single-wall carbon nanotubes with metal decoration," Energy, Elsevier, vol. 125(C), pages 459-469.
    5. Zhouhua Wang & Yun Li & Huang Liu & Fanhua Zeng & Ping Guo & Wei Jiang, 2017. "Study on the Adsorption, Diffusion and Permeation Selectivity of Shale Gas in Organics," Energies, MDPI, vol. 10(1), pages 1-15, January.
    6. Chen, Junqing & Jiang, Fujie & Cong, Qi & Pang, Xiongqi & Ma, Kuiyou & Shi, Kanyuan & Pang, Bo & Chen, Dongxia & Pang, Hong & Yang, Xiaobin & Wang, Yuying & Li, Bingyao, 2023. "Adsorption characteristics of shale gas in organic–inorganic slit pores," Energy, Elsevier, vol. 278(C).
    7. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    8. Wei Zhang & Qihong Feng & Sen Wang & Xianmin Zhang & Jiyuan Zhang & Xiaopeng Cao, 2022. "Molecular Simulation Study and Analytical Model for Oil–Water Two-Phase Fluid Transport in Shale Inorganic Nanopores," Energies, MDPI, vol. 15(7), pages 1-20, March.
    9. Yang, Xue & Chen, Zeqin & Liu, Xiaoqiang & Xue, Zhiyu & Yue, Fen & Wen, Junjie & Li, Meijun & Xue, Ying, 2022. "Correction of gas adsorption capacity in quartz nanoslit and its application in recovering shale gas resources by CO2 injection: A molecular simulation," Energy, Elsevier, vol. 240(C).
    10. Huang, Haiping & Wang, Eric, 2020. "A laboratory investigation of the impact of solvent treatment on the permeability of bituminous coal from Western Canada with a focus on microbial in-situ processing of coals," Energy, Elsevier, vol. 210(C).
    11. Li, Jing & Xie, Yetong & Liu, Huimin & Zhang, Xuecai & Li, Chuanhua & Zhang, Lisong, 2023. "Combining macro and micro experiments to reveal the real-time evolution of permeability of shale," Energy, Elsevier, vol. 262(PB).
    12. Chen, S.J. & Tao, Z.C. & Fu, Y. & Zhu, M. & Li, W.L. & Li, X.D., 2017. "CO2 separation from offshore natural gas in quiescent and flowing states using 13X zeolite," Applied Energy, Elsevier, vol. 205(C), pages 1435-1446.
    13. Guilin Zhu & Linyou Zhang & Zhihui Deng & Qingda Feng & Zhaoxuan Niu & Wenhao Xu, 2023. "Three-Dimensional Geological Modeling and Resource Estimation of Hot Dry Rock in the Gonghe Basin, Qinghai Province," Energies, MDPI, vol. 16(16), pages 1-16, August.
    14. Seman, S.Z.A. & Idris, I. & Abdullah, A. & Shamsudin, I.K. & Othman, M.R., 2019. "Optimizing purity and recovery of biogas methane enrichment process in a closed landfill," Renewable Energy, Elsevier, vol. 131(C), pages 1117-1127.
    15. Gang Liu & Duo Chen & Bo Li & Changjun Li, 2023. "Primary Growth Behavior of Sulfur Particles through the Throttle Valve in the Transmission System of High Sulfur Content Natural Gas," Energies, MDPI, vol. 16(7), pages 1-31, March.
    16. Wang, Kai & Wang, Yanhai & Xu, Chao & Guo, Haijun & Xu, Zhiyuan & Liu, Yifu & Dong, Huzi & Ju, Yang, 2023. "Modeling of multi-field gas desorption-diffusion in coal: A new insight into the bidisperse model," Energy, Elsevier, vol. 267(C).
    17. Lorenzi, Guido & Lanzini, Andrea & Santarelli, Massimo & Martin, Andrew, 2017. "Exergo-economic analysis of a direct biogas upgrading process to synthetic natural gas via integrated high-temperature electrolysis and methanation," Energy, Elsevier, vol. 141(C), pages 1524-1537.
    18. Qi, Yingxia & Meng, Xiangqi & Mu, Defu & Sun, Yangliu & Zhang, Hua, 2016. "Study on mechanism and factors affecting the gas leakage through clearance seal at nano-level by molecular dynamics method," Energy, Elsevier, vol. 102(C), pages 252-259.
    19. Qin, Lei & Wang, Ping & Lin, Haifei & Li, Shugang & Zhou, Bin & Bai, Yang & Yan, Dongjie & Ma, Chao, 2023. "Quantitative characterization of the pore volume fractal dimensions for three kinds of liquid nitrogen frozen coal and its enlightenment to coalbed methane exploitation," Energy, Elsevier, vol. 263(PA).
    20. Yan, Cheng & Muñoz, Raúl & Zhu, Liandong & Wang, Yanxin, 2016. "The effects of various LED (light emitting diode) lighting strategies on simultaneous biogas upgrading and biogas slurry nutrient reduction by using of microalgae Chlorella sp," Energy, Elsevier, vol. 106(C), pages 554-561.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221027870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.