IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v242y2022ics0360544221027754.html
   My bibliography  Save this article

Mechanical properties and strength criterion of clayey sand reservoirs during natural gas hydrate extraction

Author

Listed:
  • Chen, Huie
  • Du, Hua
  • Shi, Bin
  • Shan, Wenchong
  • Hou, Jiaqi

Abstract

To study the changes in mechanical properties of hydrate bearing clayey sand reservoirs during the mining process and explain the mechanism from a microscopic perspective, soil samples were artificially configured based on the parameters of SH7B drilling cores in Shenhu area of South China Sea. Natural gas hydrate was formed in the samples, and the mining process was simulated by hydrate decomposition under depressurization. Multistage triaxial tests were carried out, and scanning electron microscopy was conducted on samples after triaxial experiment. The results showed that the shear strengths of samples decreased with the decomposition of hydrate, and the effective cohesion was positively correlated with hydrate saturation degree. An expression for the linear growth of shear strength with effective confining pressure and hydrate saturation degree was established. In addition, hydrate saturation degree was introduced as a parameter into the Mohr-Coulomb criterion to establish a strength criterion applicable to clayey sand reservoirs in the mining process. With the decrease of hydrate saturation degree, the microstructures of samples after shearing were gradually compacted, indicating that the hydrate and soil particles bore the external load together during shear test, which maintained the morphology of pores and improved the shear strength of samples.

Suggested Citation

  • Chen, Huie & Du, Hua & Shi, Bin & Shan, Wenchong & Hou, Jiaqi, 2022. "Mechanical properties and strength criterion of clayey sand reservoirs during natural gas hydrate extraction," Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221027754
    DOI: 10.1016/j.energy.2021.122526
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221027754
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122526?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiao-Sen & Yang, Bo & Zhang, Yu & Li, Gang & Duan, Li-Ping & Wang, Yi & Chen, Zhao-Yang & Huang, Ning-Sheng & Wu, Hui-Jie, 2012. "Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 93(C), pages 722-732.
    2. Sun, Xiang & Li, Yanghui & Liu, Yu & Song, Yongchen, 2019. "The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization," Energy, Elsevier, vol. 185(C), pages 837-846.
    3. Kuniyuki Miyazaki & Norio Tenma & Kazuo Aoki & Tsutomu Yamaguchi, 2012. "A Nonlinear Elastic Model for Triaxial Compressive Properties of Artificial Methane-Hydrate-Bearing Sediment Samples," Energies, MDPI, vol. 5(10), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chongyang & Zhang, Dongming & Liu, Chenxi & Pan, Yisha & Jiang, Zhigang & Yu, Beichen & Lin, Yun, 2023. "Deformation and seepage characteristics of water-saturated shale under true triaxial stress," Energy, Elsevier, vol. 284(C).
    2. Guo, Wei & Li, Yiming & Jia, Rui & Wang, Yuan & Tang, Gege & Li, Xiaolin, 2023. "Experimental study on mechanical properties of pore-filling and fracture-filling clayey silt hydrate-bearing sediments," Energy, Elsevier, vol. 284(C).
    3. Du, Hua & Chen, Huie & Kong, Fansheng & Luo, Yonggui, 2023. "Failure mode and the mechanism of methane hydrate-bearing clayey sand sediments under depressurization," Energy, Elsevier, vol. 279(C).
    4. Zhao, Xin & Geng, Qi & Zhang, Zhen & Qiu, Zhengsong & Fang, Qingchao & Wang, Zhiyuan & Yan, Chuanliang & Ma, Yongle & Li, Yang, 2023. "Phase change material microcapsules for smart temperature regulation of drilling fluids for gas hydrate reservoirs," Energy, Elsevier, vol. 263(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Faling & Gao, Yonghai & Zhang, Heen & Sun, Baojiang & Chen, Ye & Gao, Dongzhi & Zhao, Xinxin, 2022. "Comprehensive evaluation of gas production efficiency and reservoir stability of horizontal well with different depressurization methods in low permeability hydrate reservoir," Energy, Elsevier, vol. 239(PE).
    2. Rui Song & Yaojiang Duan & Jianjun Liu & Yujia Song, 2022. "Numerical Modeling on Dissociation and Transportation of Natural Gas Hydrate Considering the Effects of the Geo-Stress," Energies, MDPI, vol. 15(24), pages 1-22, December.
    3. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    4. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2018. "Influence of well pattern on gas recovery from methane hydrate reservoir by large scale experimental investigation," Energy, Elsevier, vol. 152(C), pages 34-45.
    5. Obara, Shin'ya & Kikuchi, Yoshinobu & Ishikawa, Kyosuke & Kawai, Masahito & Yoshiaki, Kashiwaya, 2015. "Development of a compound energy system for cold region houses using small-scale natural gas cogeneration and a gas hydrate battery," Energy, Elsevier, vol. 85(C), pages 280-295.
    6. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).
    7. Lee, Joonseop & Lee, Dongyoung & Seo, Yongwon, 2021. "Experimental investigation of the exact role of large-molecule guest substances (LMGSs) in determining phase equilibria and structures of natural gas hydrates," Energy, Elsevier, vol. 215(PB).
    8. Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Li, Bo & Chen, Zhao-Yang, 2013. "Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system," Applied Energy, Elsevier, vol. 110(C), pages 90-97.
    9. Yin, Zhenyuan & Huang, Li & Linga, Praveen, 2019. "Effect of wellbore design on the production behaviour of methane hydrate-bearing sediments induced by depressurization," Applied Energy, Elsevier, vol. 254(C).
    10. Jing-Chun Feng & Xiao-Sen Li & Gang Li & Bo Li & Zhao-Yang Chen & Yi Wang, 2014. "Numerical Investigation of Hydrate Dissociation Performance in the South China Sea with Different Horizontal Well Configurations," Energies, MDPI, vol. 7(8), pages 1-22, July.
    11. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2016. "Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment," Applied Energy, Elsevier, vol. 162(C), pages 372-381.
    12. Wu, Zhaoran & Liu, Weiguo & Zheng, Jianan & Li, Yanghui, 2020. "Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments," Applied Energy, Elsevier, vol. 261(C).
    13. Zheng, Ruyi & Li, Shuxia & Li, Qingping & Li, Xiaoli, 2018. "Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs," Applied Energy, Elsevier, vol. 215(C), pages 405-415.
    14. Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    15. Li, Nan & Zhang, Jie & Xia, Ming-Ji & Sun, Chang-Yu & Liu, Yan-Sheng & Chen, Guang-Jin, 2021. "Gas production from heterogeneous hydrate-bearing sediments by depressurization in a large-scale simulator," Energy, Elsevier, vol. 234(C).
    16. Thakre, Niraj & Jana, Amiya K., 2021. "Physical and molecular insights to Clathrate hydrate thermodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Azizi, Mohammad Ali & Brouwer, Jacob & Dunn-Rankin, Derek, 2016. "Analytical investigation of high temperature 1kW solid oxide fuel cell system feasibility in methane hydrate recovery and deep ocean power generation," Applied Energy, Elsevier, vol. 179(C), pages 909-928.
    18. Chong, Zheng Rong & Moh, Jia Wei Regine & Yin, Zhenyuan & Zhao, Jianzhong & Linga, Praveen, 2018. "Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments," Applied Energy, Elsevier, vol. 229(C), pages 637-647.
    19. Song, Yongchen & Yang, Lei & Zhao, Jiafei & Liu, Weiguo & Yang, Mingjun & Li, Yanghui & Liu, Yu & Li, Qingping, 2014. "The status of natural gas hydrate research in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 778-791.
    20. Xu, Chun-Gang & Cai, Jing & Lin, Fu-hua & Chen, Zhao-Yang & Li, Xiao-Sen, 2015. "Raman analysis on methane production from natural gas hydrate by carbon dioxide–methane replacement," Energy, Elsevier, vol. 79(C), pages 111-116.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221027754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.