IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipes0360544221028711.html
   My bibliography  Save this article

Techno-economic optimization of a district heat condenser in a small cogeneration plant with a novel greedy cuckoo search

Author

Listed:
  • Saari, Jussi
  • Martinez, Clara Mendoza
  • Kaikko, Juha
  • Sermyagina, Ekaterina
  • Mankonen, Aleksi
  • Vakkilainen, Esa

Abstract

The goal of the study was to develop an optimization methodology combining a cost model, a 2-D heat transfer model, and load variation, executable in a feasible time in a personal computer. The objective function to maximize is the annual net cash flow. For this purpose, the cogeneration plant performance is determined at different load points as a function of the condenser performance using IPSEpro process simulation software. This data is then used to implement the calculation process to obtain the objective function value. Due to the computationally heavy heat transfer model, and each objective function evaluation requiring multiple runs, one per load point, improving optimizer performance was given particular attention. A novel hybridization of cuckoo search and a greedy differential evolution strategy was created for this; the new algorithm is shown to perform better than either of its parent algorithms or other benchmarks, finding optimal solution reliably, and within approximately half the number of function evaluations as required by the parent algorithms.

Suggested Citation

  • Saari, Jussi & Martinez, Clara Mendoza & Kaikko, Juha & Sermyagina, Ekaterina & Mankonen, Aleksi & Vakkilainen, Esa, 2022. "Techno-economic optimization of a district heat condenser in a small cogeneration plant with a novel greedy cuckoo search," Energy, Elsevier, vol. 239(PE).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221028711
    DOI: 10.1016/j.energy.2021.122622
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221028711
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122622?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rao, R. Venkata & Saroj, Ankit, 2017. "Constrained economic optimization of shell-and-tube heat exchangers using elitist-Jaya algorithm," Energy, Elsevier, vol. 128(C), pages 785-800.
    2. Dargam, Fatima C. C. & Perz, Erhard W., 1998. "A decision support system for power plant design," European Journal of Operational Research, Elsevier, vol. 109(2), pages 310-320, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jujie Wang & Zhenzhen Zhuang & Liu Feng, 2022. "Intelligent Optimization Based Multi-Factor Deep Learning Stock Selection Model and Quantitative Trading Strategy," Mathematics, MDPI, vol. 10(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jussi Saari & Ekaterina Sermyagina & Juha Kaikko & Markus Haider & Marcelo Hamaguchi & Esa Vakkilainen, 2021. "Evaluation of the Energy Efficiency Improvement Potential through Back-End Heat Recovery in the Kraft Recovery Boiler," Energies, MDPI, vol. 14(6), pages 1-21, March.
    2. Jussi Saari & Petteri Peltola & Katja Kuparinen & Juha Kaikko & Ekaterina Sermyagina & Esa Vakkilainen, 2023. "Novel BECCS implementation integrating chemical looping combustion with oxygen uncoupling and a kraft pulp mill cogeneration plant," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(4), pages 1-26, April.
    3. Xu, Shuhui & Wang, Yong & Wang, Zhi, 2019. "Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method," Energy, Elsevier, vol. 173(C), pages 457-467.
    4. Sérgio Pedro Duarte & Jorge Pinho de Sousa & Jorge Freire de Sousa, 2022. "Rethinking Technology-Based Services to Promote Citizen Participation in Urban Mobility," International Journal of Decision Support System Technology (IJDSST), IGI Global, vol. 15(2), pages 1-20, December.
    5. Juan José Cartelle Barros & Manuel Lara Coira & María Pilar de la Cruz López & Alfredo del Caño Gochi & Isabel Soares, 2020. "Optimisation Techniques for Managing the Project Sustainability Objective: Application to a Shell and Tube Heat Exchanger," Sustainability, MDPI, vol. 12(11), pages 1-22, June.
    6. Rizk M. Rizk-Allah & Mahmoud A. Abo-Sinna, 2021. "A comparative study of two optimization approaches for solving bi-level multi-objective linear fractional programming problem," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 374-402, June.
    7. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Decision analysis in energy and environmental modeling: An update," Energy, Elsevier, vol. 31(14), pages 2604-2622.
    8. Cai, Jun & Huai, Xiulan & Xi, Wenxuan, 2018. "An optimal design approach for the annular involute-profile cross wavy primary surface recuperator in microturbine and an application case study," Energy, Elsevier, vol. 153(C), pages 80-89.
    9. Peltola, Petteri & Saari, Jussi & Tynjälä, Tero & Hyppänen, Timo, 2020. "Process integration of chemical looping combustion with oxygen uncoupling in a biomass-fired combined heat and power plant," Energy, Elsevier, vol. 210(C).
    10. Yonathan Heredia-Aricapa & Juan M. Belman-Flores & Jorge A. Soria-Alcaraz & Vicente Pérez-García & Francisco Elizalde-Blancas & Jorge A. Alfaro-Ayala & José Ramírez-Minguela, 2022. "Multi-Objective Optimization of a Multilayer Wire-on-Tube Condenser: Case Study R134a, R600a, and R513A," Energies, MDPI, vol. 15(17), pages 1-14, August.
    11. Shui-Hua Wang & Khan Muhammad & Yiding Lv & Yuxiu Sui & Liangxiu Han & Yu-Dong Zhang, 2018. "Identification of Alcoholism Based on Wavelet Renyi Entropy and Three-Segment Encoded Jaya Algorithm," Complexity, Hindawi, vol. 2018, pages 1-13, January.
    12. Ganjehkaviri, A. & Mohd Jaafar, M.N., 2020. "Multi-objective particle swarm optimization of flat plate solar collector using constructal theory," Energy, Elsevier, vol. 194(C).
    13. Yiming Wei & Zengchuan Dong, 2021. "Application of a Novel Jaya Algorithm Based on Chaotic Sequence and Opposition-based Learning in the Multi-objective Optimal Operation of Cascade Hydropower Stations System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1397-1413, March.
    14. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2021. "Thermodynamic optimization of the superheater during switching the load transient processes," Energy, Elsevier, vol. 218(C).
    15. Xiao, Wu & Wang, Kaifeng & Jiang, Xiaobin & Li, Xiangcun & Wu, Xuemei & Hao, Ze & He, Gaohong, 2019. "Simultaneous optimization strategies for heat exchanger network synthesis and detailed shell-and-tube heat-exchanger design involving phase changes using GA/SA," Energy, Elsevier, vol. 183(C), pages 1166-1177.
    16. Zhang, Yiying & Ma, Maode & Jin, Zhigang, 2020. "Comprehensive learning Jaya algorithm for parameter extraction of photovoltaic models," Energy, Elsevier, vol. 211(C).
    17. Dizaji, Hamed Sadighi & Pourhedayat, Samira & Aldawi, Fayez & Moria, Hazim & Anqi, Ali E. & Jarad, Fahd, 2022. "Proposing an innovative and explicit economic criterion for all passive heat transfer enhancement techniques of heat exchangers," Energy, Elsevier, vol. 239(PC).
    18. Yu, Kunjie & Qu, Boyang & Yue, Caitong & Ge, Shilei & Chen, Xu & Liang, Jing, 2019. "A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module," Applied Energy, Elsevier, vol. 237(C), pages 241-257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221028711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.