IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v236y2021ics0360544221017187.html
   My bibliography  Save this article

Coupling optimization study of key influencing factors on PCM trombe wall for year thermal management

Author

Listed:
  • Zhu, Na
  • Deng, Renjie
  • Hu, Pingfang
  • Lei, Fei
  • Xu, Linghong
  • Jiang, Zhangning

Abstract

The proposed environment-interactive novel Trombe wall system was a passive building envelope integrated with phase change material (PCM) based on traditional Trombe wall. Compared with traditional Trombe wall system, this system can make full use of solar energy and nature ventilation, improving indoor thermal comfort. The dynamic heat transfer model of PCM Trombe room was established, and six key factors influencing thermal performance of PCM Trombe wall system were analyzed. Through the coupled operation of TRNSYS heat transfer model and GenOpt optimization software, the energy consumption characteristics of the system and the optimal value of the key influencing factors were analyzed and obtained. The optimal air gap thickness was 0.05 m, the optimal external sun-shading length was 0.78 m, the optimal thermal storage wall thickness was 0.68 m, the optimal vents area was 0.6 m2, the optimal melting temperature of lower temperature PCM layer was 16.5 °C, and the optimal melting temperature of higher temperature PCM layer was 27.75 °C. The annual total building load was reduced by 7.56% in optimized reference Trombe room compared with traditional Trombe wall, and the annual total building load was reduced by 13.52% in optimized PCM Trombe compared with reference Trombe wall.

Suggested Citation

  • Zhu, Na & Deng, Renjie & Hu, Pingfang & Lei, Fei & Xu, Linghong & Jiang, Zhangning, 2021. "Coupling optimization study of key influencing factors on PCM trombe wall for year thermal management," Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221017187
    DOI: 10.1016/j.energy.2021.121470
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221017187
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121470?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sergei, Kostikov & Shen, Chao & Jiang, Yiqiang, 2020. "A review of the current work potential of a trombe wall," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Saadatian, Omidreza & Sopian, K. & Lim, C.H. & Asim, Nilofar & Sulaiman, M.Y., 2012. "Trombe walls: A review of opportunities and challenges in research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6340-6351.
    3. Li, Yongcai & Liu, Shuli, 2014. "Experimental study on thermal performance of a solar chimney combined with PCM," Applied Energy, Elsevier, vol. 114(C), pages 172-178.
    4. Kundakci Koyunbaba, Basak & Yilmaz, Zerrin, 2012. "The comparison of Trombe wall systems with single glass, double glass and PV panels," Renewable Energy, Elsevier, vol. 45(C), pages 111-118.
    5. Onishi, Junji & Soeda, Haruo & Mizuno, Minoru, 2001. "Numerical study on a low energy architecture based upon distributed heat storage system," Renewable Energy, Elsevier, vol. 22(1), pages 61-66.
    6. Hu, Zhongting & He, Wei & Ji, Jie & Zhang, Shengyao, 2017. "A review on the application of Trombe wall system in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 976-987.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Bin & Gan, Wen-tao & Wang, Yang-liang & Chen, Xing-ni & Fei, Yue & Pei, Gang, 2023. "Thermal performance of a novel Trombe wall integrated with direct absorption solar collector based on phase change slurry in winter," Renewable Energy, Elsevier, vol. 213(C), pages 246-258.
    2. Li, Niansi & Gu, Tao & Xie, Hao & Ji, Jie & Liu, Xiaoyong & Yu, Bendong, 2023. "The kinetic and preliminary performance study on a novel solar photo-thermal catalytic hybrid Trombe-wall," Energy, Elsevier, vol. 269(C).
    3. Aleksejs Prozuments & Anatolijs Borodinecs & Guna Bebre & Diana Bajare, 2023. "A Review on Trombe Wall Technology Feasibility and Applications," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    4. Qing Yin & Hengyu Liu & Tianfu Zhou, 2023. "CiteSpace-Based Visualization Analysis on the Trombe Wall in Solar Buildings," Sustainability, MDPI, vol. 15(15), pages 1-24, July.
    5. Askari, Minoo & Jahangir, Mohammad Hossein, 2023. "Evaluation of thermal performance and energy efficiency of a Trombe wall improved with dual phase change materials," Energy, Elsevier, vol. 284(C).
    6. Rabani, Mehran, 2022. "Experimental comparison of energy and exergy analysis of a new designed and a Normal Trombe wall," Energy, Elsevier, vol. 260(C).
    7. Tariq, Rasikh & Torres-Aguilar, C.E. & Sheikh, Nadeem Ahmed & Ahmad, Tanveer & Xamán, J. & Bassam, A., 2022. "Data engineering for digital twining and optimization of naturally ventilated solar façade with phase changing material under global projection scenarios," Renewable Energy, Elsevier, vol. 187(C), pages 1184-1203.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Lili & Hou, Yuyao & Liu, Zu’an & Du, Junfei & Xu, Long & Zhang, Guomin & Shi, Long, 2020. "Trombe wall for a residential building in Sichuan-Tibet alpine valley – A case study," Renewable Energy, Elsevier, vol. 156(C), pages 31-46.
    2. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Zhu, Na & Li, Shanshan & Hu, Pingfang & Lei, Fei & Deng, Renjie, 2019. "Numerical investigations on performance of phase change material Trombe wall in building," Energy, Elsevier, vol. 187(C).
    4. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    5. Hu, Zhongting & He, Wei & Ji, Jie & Zhang, Shengyao, 2017. "A review on the application of Trombe wall system in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 976-987.
    6. Ma, Qingsong & Fukuda, Hiroatsu & Wei, Xindong & Hariyadi, Agus, 2019. "Optimizing energy performance of a ventilated composite Trombe wall in an office building," Renewable Energy, Elsevier, vol. 134(C), pages 1285-1294.
    7. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    8. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    9. Lech Lichołai & Aleksander Starakiewicz & Joanna Krasoń & Przemysław Miąsik, 2021. "The Influence of Glazing on the Functioning of a Trombe Wall Containing a Phase Change Material," Energies, MDPI, vol. 14(17), pages 1-19, August.
    10. Hu, Zhongting & He, Wei & Hu, Dengyun & Lv, Song & Wang, Liping & Ji, Jie & Chen, Hongbing & Ma, Jinwei, 2017. "Design, construction and performance testing of a PV blind-integrated Trombe wall module," Applied Energy, Elsevier, vol. 203(C), pages 643-656.
    11. Islam, Nazrul & Irshad, Kashif & Zahir, Md Hasan & Islam, Saiful, 2021. "Numerical and experimental study on the performance of a Photovoltaic Trombe wall system with Venetian blinds," Energy, Elsevier, vol. 218(C).
    12. Sergei, Kostikov & Shen, Chao & Jiang, Yiqiang, 2020. "A review of the current work potential of a trombe wall," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    13. Przemysław Miąsik & Joanna Krasoń, 2021. "Thermal Efficiency of Trombe Wall in the South Facade of a Frame Building," Energies, MDPI, vol. 14(3), pages 1-23, January.
    14. Qingsong Ma & Hiroatsu Fukuda & Takumi Kobatake & Myonghyang Lee, 2017. "Study of a Double-Layer Trombe Wall Assisted by a Temperature-Controlled DC Fan for Heating Seasons," Sustainability, MDPI, vol. 9(12), pages 1-12, November.
    15. Enghok Leang & Pierre Tittelein & Laurent Zalewski & Stéphane Lassue, 2020. "Impact of a Composite Trombe Wall Incorporating Phase Change Materials on the Thermal Behavior of an Individual House with Low Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-32, September.
    16. Askari, Minoo & Jahangir, Mohammad Hossein, 2023. "Evaluation of thermal performance and energy efficiency of a Trombe wall improved with dual phase change materials," Energy, Elsevier, vol. 284(C).
    17. Abdulmajeed Mohamad & Jan Taler & Paweł Ocłoń, 2019. "Trombe Wall Utilization for Cold and Hot Climate Conditions," Energies, MDPI, vol. 12(2), pages 1-18, January.
    18. Dong, Jiankai & Chen, Zhihua & Zhang, Long & Cheng, Yuanda & Sun, Suyuting & Jie, Jia, 2019. "Experimental investigation on the heating performance of a novel designed trombe wall," Energy, Elsevier, vol. 168(C), pages 728-736.
    19. Hong, Xiaoqiang & Leung, Michael K.H. & He, Wei, 2019. "Effective use of venetian blind in Trombe wall for solar space conditioning control," Applied Energy, Elsevier, vol. 250(C), pages 452-460.
    20. Bevilacqua, Piero & Benevento, Federica & Bruno, Roberto & Arcuri, Natale, 2019. "Are Trombe walls suitable passive systems for the reduction of the yearly building energy requirements?," Energy, Elsevier, vol. 185(C), pages 554-566.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221017187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.