IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v224y2021ics0360544221001936.html
   My bibliography  Save this article

On the solar air heater thermal enhancement and flow topology using differently shaped ribs combined with delta-winglet vortex generators

Author

Listed:
  • Zhao, Zhiqi
  • Luo, Lei
  • Qiu, Dandan
  • Wang, Zhongqi
  • Sundén, Bengt

Abstract

A numerical investigation has been conducted to study the convective heat transfer enhancement and friction loss behaviors for turbulent flow by using arrays of differently shaped ribs combined with delta-winglet vortex generators (DWVGs) pair on the absorber plate of a solar air heater. Four transverse vortex generators arrays, i.e., 90° continuous ribs, 90° truncated ribs, 60° V-shaped continuous ribs, and 60° V-shaped truncated ribs, are studied to investigate the mixing effect with the DWVGs pair. The aspect ratio (AR = Lv/Hv) of the DWVGs is 2:1 while the geometrical condition of the ribs is height of 0.003 m and pitch of 0.028 m. The Reynolds number ranges from 4000 to 20,000. Results of temperature, Nusselt number, vortical structure, topological portrait, turbulent kinetic energy (TKE), friction factor and thermal performance evaluation are included. The results show that the adoption of DWVGs and the shape type of the ribs have great impact on the heat transfer and flow structure in the solar air heater. It is found that the DWVGs combined with the 60° V-shaped continuous ribs contributes the best heat transfer performance, and the heat transfer is enhanced by 39.4% compared with the only DWVGs case.

Suggested Citation

  • Zhao, Zhiqi & Luo, Lei & Qiu, Dandan & Wang, Zhongqi & Sundén, Bengt, 2021. "On the solar air heater thermal enhancement and flow topology using differently shaped ribs combined with delta-winglet vortex generators," Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:energy:v:224:y:2021:i:c:s0360544221001936
    DOI: 10.1016/j.energy.2021.119944
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221001936
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Lei & Du, Wei & Wang, Songtao & Wang, Lei & Sundén, Bengt & Zhang, Xinhong, 2017. "Multi-objective optimization of a solar receiver considering both the dimple/protrusion depth and delta-winglet vortex generators," Energy, Elsevier, vol. 137(C), pages 1-19.
    2. Sahu, M.M. & Bhagoria, J.L., 2005. "Augmentation of heat transfer coefficient by using 90° broken transverse ribs on absorber plate of solar air heater," Renewable Energy, Elsevier, vol. 30(13), pages 2057-2073.
    3. Luo, Lei & Wen, Fengbo & Wang, Lei & Sundén, Bengt & Wang, Songtao, 2016. "Thermal enhancement by using grooves and ribs combined with delta-winglet vortex generator in a solar receiver heat exchanger," Applied Energy, Elsevier, vol. 183(C), pages 1317-1332.
    4. Singh, Sukhmeet & Singh, Bikramjit & Hans, V.S. & Gill, R.S., 2015. "CFD (computational fluid dynamics) investigation on Nusselt number and friction factor of solar air heater duct roughened with non-uniform cross-section transverse rib," Energy, Elsevier, vol. 84(C), pages 509-517.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haitao Wang & Jianfeng Zhai, 2023. "Simulation Analysis of High Radiant Heat Plant Cooling and Endothermic Screen Waste Heat Recovery Performance Based on FLUENT," Energies, MDPI, vol. 16(10), pages 1-16, May.
    2. Ravanbakhsh, Mohammad & Gholizadeh, Mohammad & Rezapour, Mojtaba, 2023. "3E thermodynamic modeling and optimization a novel of ARS-CPVT with the effect of inserting a turbulator in the solar collector," Renewable Energy, Elsevier, vol. 209(C), pages 591-607.
    3. Rawal Diganjit & Nagaranjan Gnanasekaran & Moghtada Mobedi, 2023. "Thermohydraulic Efficiency of a Solar Air Heater in the Presence of Graded Aluminium Wire Mesh—A Combined Experimental–Numerical Study," Energies, MDPI, vol. 16(15), pages 1-32, July.
    4. Al-Zahrani, Salman, 2023. "Thermal performance augmentation of solar air heater with curved path," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    2. Varun Kumar B. & G. Manikandan & P. Rajesh Kanna & Dawid Taler & Jan Taler & Marzena Nowak-Ocłoń & Karol Mzyk & Hoong Thiam Toh, 2018. "A Performance Evaluation of a Solar Air Heater Using Different Shaped Ribs Mounted on the Absorber Plate—A Review," Energies, MDPI, vol. 11(11), pages 1-20, November.
    3. Bhuvad, Sushant Suresh & Azad, Rajnish & Lanjewar, Atul, 2022. "Thermal performance analysis of apex-up discrete arc ribs solar air heater-an experimental study," Renewable Energy, Elsevier, vol. 185(C), pages 403-415.
    4. Singla, Mohit & Hans, Vishavjeet Singh & Singh, Sukhmeet, 2022. "CFD analysis of rib roughened solar evacuated tube collector for air heating," Renewable Energy, Elsevier, vol. 183(C), pages 78-89.
    5. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    6. Deo, Narinderpal Singh & Chander, Subhash & Saini, J.S., 2016. "Performance analysis of solar air heater duct roughened with multigap V-down ribs combined with staggered ribs," Renewable Energy, Elsevier, vol. 91(C), pages 484-500.
    7. Zhen Zhao & Liang Xu & Jianmin Gao & Lei Xi & Qicheng Ruan & Yunlong Li, 2022. "Multi-Objective Optimization of Parameters of Channels with Staggered Frustum of a Cone Based on Response Surface Methodology," Energies, MDPI, vol. 15(3), pages 1-19, February.
    8. Jin, Dongxu & Zhang, Manman & Wang, Ping & Xu, Shasha, 2015. "Numerical investigation of heat transfer and fluid flow in a solar air heater duct with multi V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 89(C), pages 178-190.
    9. Tang, Song-Zhen & Wang, Fei-Long & He, Ya-Ling & Yu, Yang & Tong, Zi-Xiang, 2019. "Parametric optimization of H-type finned tube with longitudinal vortex generators by response surface model and genetic algorithm," Applied Energy, Elsevier, vol. 239(C), pages 908-918.
    10. Aharwal, K.R. & Gandhi, B.K. & Saini, J.S., 2008. "Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater," Renewable Energy, Elsevier, vol. 33(4), pages 585-596.
    11. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    13. Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "Numerical investigation of flow through inclined fins under the absorber plate of solar air heater," Renewable Energy, Elsevier, vol. 141(C), pages 468-481.
    14. Kumar, Rajneesh & Goel, Varun & Kumar, Anoop, 2018. "Investigation of heat transfer augmentation and friction factor in triangular duct solar air heater due to forward facing chamfered rectangular ribs: A CFD based analysis," Renewable Energy, Elsevier, vol. 115(C), pages 824-835.
    15. Anil Kumar & Man-Hoe Kim, 2016. "CFD Analysis on the Thermal Hydraulic Performance of an SAH Duct with Multi V-Shape Roughened Ribs," Energies, MDPI, vol. 9(6), pages 1-23, May.
    16. Varun Kumar, B. & Manikandan, G. & Rajesh Kanna, P., 2021. "Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD," Energy, Elsevier, vol. 234(C).
    17. Kumar, Anil & Kim, Man-Hoe, 2016. "Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: A comprehensive review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 635-652.
    18. Gill, R.S. & Hans, V.S. & Saini, J.S. & Singh, Sukhmeet, 2017. "Investigation on performance enhancement due to staggered piece in a broken arc rib roughened solar air heater duct," Renewable Energy, Elsevier, vol. 104(C), pages 148-162.
    19. Lanjewar, Atul & Bhagoria, J.L. & Sarviya, R.M., 2011. "Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate," Energy, Elsevier, vol. 36(7), pages 4531-4541.
    20. Zhao, Xiaohuan & E, Jiaqiang & Zhang, Zhiqing & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Leng, Erwei & Han, Dandan & Hu, Wenyu, 2020. "A review on heat enhancement in thermal energy conversion and management using Field Synergy Principle," Applied Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:224:y:2021:i:c:s0360544221001936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.