IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v211y2020ics0360544220312949.html
   My bibliography  Save this article

Air-Steam gasification of lignite in a fixed bed gasifier: Influence of steam to lignite ratio on performance of downdraft gasifier

Author

Listed:
  • Upadhyay, Darshit S.
  • Panchal, Krunal R.
  • Sakhiya, Anil Kumar V
  • Patel, Rajesh N.

Abstract

This work aims to identify the optimum Steam to Lignite ratio, w/w (SLR) to achieve higher H2 yield and lower tar yield in the producer gas. Experiments were carried out in a 10kWe atmospheric pressure downdraft gasifier. Low-rank high ash lignite (22–25 mm) was used as a feedstock to investigate the effect of six different SLRs (0, 0.06, 0.14, 0.18, 0.24, 0.30 and 0.48). The producer gas Lower Heating Value (LHV) and Cold Gas Efficiency (CGE) were found in the range of 4.96 MJ Nm−3–5.62 MJ Nm−3 and 70.6%–81%, respectively for different SLR. The optimal SLR was identified to be 0.24, having lower specific fuel consumption (1.437 kg kWh−1), lower tar content (112.28 mg Nm−3), lower Particulate Matter (PM) (27.34 mg Nm−3), higher LHV (5.62 MJ Nm−3) and higher CGE (81%). H2 yield and H2/CO ratio improved by 34.7% and 52%, respectively whereas tar yield reduced by 78.31% at 0.24 SLR compared to air gasification. The mass balance, exergy analysis, heat loss analysis were also carried out for this study. The study concludes that the 0.24 SLR offered better results among the selected ratios to achieve higher H2 yield and lower tar yield in the producer gas.

Suggested Citation

  • Upadhyay, Darshit S. & Panchal, Krunal R. & Sakhiya, Anil Kumar V & Patel, Rajesh N., 2020. "Air-Steam gasification of lignite in a fixed bed gasifier: Influence of steam to lignite ratio on performance of downdraft gasifier," Energy, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220312949
    DOI: 10.1016/j.energy.2020.118187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220312949
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ram, Narasimhan Kodanda & Singh, Nameirakpam Rajesh & Raman, Perumal & Kumar, Atul & Kaushal, Priyanka, 2019. "A detailed experimental analysis of air–steam gasification in a dual fired downdraft biomass gasifier enabling hydrogen enrichment in the producer gas," Energy, Elsevier, vol. 187(C).
    2. Patra, Tapas Kumar & Sheth, Pratik N., 2015. "Biomass gasification models for downdraft gasifier: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 583-593.
    3. Upadhyay, Darshit S. & Khosla, Aakash & Chaudhary, Amita & Patel, Rajesh N., 2019. "Effect of catalyst to lignite ratio on the performance of a pilot scale fixed bed gasifier," Energy, Elsevier, vol. 189(C).
    4. Patel, Vimal R. & Upadhyay, Darshit S. & Patel, Rajesh N., 2014. "Gasification of lignite in a fixed bed reactor: Influence of particle size on performance of downdraft gasifier," Energy, Elsevier, vol. 78(C), pages 323-332.
    5. Przybyla, Grzegorz & Szlek, Andrzej & Haggith, Dale & Sobiesiak, Andrzej, 2016. "Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas," Energy, Elsevier, vol. 116(P3), pages 1464-1478.
    6. Prins, M.J. & Ptasinski, K.J., 2005. "Energy and exergy analyses of the oxidation and gasification of carbon," Energy, Elsevier, vol. 30(7), pages 982-1002.
    7. Upadhyay, Darshit S. & Sakhiya, Anil Kumar & Panchal, Krunal & Patel, Amar H. & Patel, Rajesh N., 2019. "Effect of equivalence ratio on the performance of the downdraft gasifier – An experimental and modelling approach," Energy, Elsevier, vol. 168(C), pages 833-846.
    8. Choi, Young-Kon & Cho, Min-Hwan & Kim, Joo-Sik, 2015. "Steam/oxygen gasification of dried sewage sludge in a two-stage gasifier: Effects of the steam to fuel ratio and ash of the activated carbon on the production of hydrogen and tar removal," Energy, Elsevier, vol. 91(C), pages 160-167.
    9. Dogru, M. & Howarth, C.R. & Akay, G. & Keskinler, B. & Malik, A.A., 2002. "Gasification of hazelnut shells in a downdraft gasifier," Energy, Elsevier, vol. 27(5), pages 415-427.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Curcio, Axel & Rodat, Sylvain & Vuillerme, Valéry & Abanades, Stéphane, 2022. "Design and validation of reactant feeding control strategies for the solar-autothermal hybrid gasification of woody biomass," Energy, Elsevier, vol. 254(PC).
    2. Chaudhary, Amita & Lakhani, Jay & Dalsaniya, Priyank & Chaudhary, Prins & Trada, Akshit & Shah, Niraj K. & Upadhyay, Darshit S., 2023. "Slow pyrolysis of low-density Poly-Ethylene (LDPE): A batch experiment and thermodynamic analysis," Energy, Elsevier, vol. 263(PB).
    3. Kakati, Ujjiban & Sakhiya, Anil Kumar & Baghel, Paramjeet & Trada, Akshit & Mahapatra, Sadhan & Upadhyay, Darshit & Kaushal, Priyanka, 2022. "Sustainable utilization of bamboo through air-steam gasification in downdraft gasifier: Experimental and simulation approach," Energy, Elsevier, vol. 252(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kakati, Ujjiban & Sakhiya, Anil Kumar & Baghel, Paramjeet & Trada, Akshit & Mahapatra, Sadhan & Upadhyay, Darshit & Kaushal, Priyanka, 2022. "Sustainable utilization of bamboo through air-steam gasification in downdraft gasifier: Experimental and simulation approach," Energy, Elsevier, vol. 252(C).
    2. Patel, Vimal R. & Patel, Darshil & Varia, Nandan S. & Patel, Rajesh N., 2017. "Co-gasification of lignite and waste wood in a pilot-scale (10 kWe) downdraft gasifier," Energy, Elsevier, vol. 119(C), pages 834-844.
    3. Chaudhary, Amita & Lakhani, Jay & Dalsaniya, Priyank & Chaudhary, Prins & Trada, Akshit & Shah, Niraj K. & Upadhyay, Darshit S., 2023. "Slow pyrolysis of low-density Poly-Ethylene (LDPE): A batch experiment and thermodynamic analysis," Energy, Elsevier, vol. 263(PB).
    4. Silva, Isabelly P. & Lima, Rafael M.A. & Santana, Hortência E.P. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2022. "Development of a semi-empirical model for woody biomass gasification based on stoichiometric thermodynamic equilibrium model," Energy, Elsevier, vol. 241(C).
    5. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.
    6. Silva, Isabelly P. & Lima, Rafael M.A. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2019. "Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: A review of model modifications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Sutar, Kailasnath B. & Kohli, Sangeeta & Ravi, M.R., 2017. "Design, development and testing of small downdraft gasifiers for domestic cookstoves," Energy, Elsevier, vol. 124(C), pages 447-460.
    8. Hafiz Muhammad Uzair Ayub & Sang Jin Park & Michael Binns, 2020. "Biomass to Syngas: Modified Stoichiometric Thermodynamic Models for Downdraft Biomass Gasification," Energies, MDPI, vol. 13(20), pages 1, October.
    9. Ibrahim, A. & Veremieiev, S. & Gaskell, P.H., 2022. "An advanced, comprehensive thermochemical equilibrium model of a downdraft biomass gasifier," Renewable Energy, Elsevier, vol. 194(C), pages 912-925.
    10. Chen, Wei & Annamalai, Kalyan & Ansley, R. James & Mirik, Mustafa, 2012. "Updraft fixed bed gasification of mesquite and juniper wood samples," Energy, Elsevier, vol. 41(1), pages 454-461.
    11. Ram, Narasimhan Kodanda & Singh, Nameirakpam Rajesh & Raman, Perumal & Kumar, Atul & Kaushal, Priyanka, 2020. "Experimental study on performance analysis of an internal combustion engine operated on hydrogen-enriched producer gas from the air–steam gasification," Energy, Elsevier, vol. 205(C).
    12. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    13. Wang, Linzheng & Zhang, Ruizhi & Deng, Ruiqu & Liu, Zeqing & Luo, Yonghao, 2023. "Comprehensive parametric study of fixed-bed co-gasification process through Multiple Thermally Thick Particle (MTTP) model," Applied Energy, Elsevier, vol. 348(C).
    14. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    15. Yao, Xiwen & Zhao, Zhicheng & Li, Jishuo & Zhang, Bohan & Zhou, Haodong & Xu, Kaili, 2020. "Experimental investigation of physicochemical and slagging characteristics of inorganic constituents in ash residues from gasification of different herbaceous biomass," Energy, Elsevier, vol. 198(C).
    16. Cullen, Jonathan M. & Allwood, Julian M., 2010. "Theoretical efficiency limits for energy conversion devices," Energy, Elsevier, vol. 35(5), pages 2059-2069.
    17. Kim, Jae-Kyung & Jeong, Yong-Seong & Kim, Jong-Woo & Kim, Joo-Sik, 2023. "Two-stage thermochemical conversion of polyethylene terephthalate using steam to produce a clean and H2- and CO-rich syngas," Energy, Elsevier, vol. 276(C).
    18. Toghyani, Mahboubeh & Rahimi, Amir, 2015. "Exergy analysis of an industrial unit of catalyst regeneration based on the results of modeling and simulation," Energy, Elsevier, vol. 91(C), pages 1049-1056.
    19. Patuzzi, Francesco & Basso, Daniele & Vakalis, Stergios & Antolini, Daniele & Piazzi, Stefano & Benedetti, Vittoria & Cordioli, Eleonora & Baratieri, Marco, 2021. "State-of-the-art of small-scale biomass gasification systems: An extensive and unique monitoring review," Energy, Elsevier, vol. 223(C).
    20. Lin, Chiou-Liang & Chou, Jing-Dong & Iu, Chi-Hou, 2020. "Effects of second-stage bed materials on hydrogen production in the syngas of a two-stage gasification process," Renewable Energy, Elsevier, vol. 154(C), pages 903-912.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220312949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.