IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v199y2020ics0360544220306058.html
   My bibliography  Save this article

Techno-economic optimization of power-to-methanol with co-electrolysis of CO2 and H2O in solid-oxide electrolyzers

Author

Listed:
  • Zhang, Hanfei
  • Desideri, Umberto

Abstract

Power-to-methanol processes with co-electrolysis in solid-oxide electrolyzer provides a promising approach to deal with two problems: large-scale renewable electricity storage and carbon capture and utilization. In this paper, a large-scale power-to-methanol system with solid-oxide electrolyzer co-electrolysis technology is studied. System-level heat integration and techno-economic assessment are performed by using a multi-objective optimization platform. The results indicate that there is a slight trade-off between the overall energy efficiency and methanol production cost. The system can achieve a high energy efficiency (72%) and carbon conversion efficiency (93.6%), with the annual CO2 utilization reaching 146.7 kton. However, its economic cost is high. SOE stack price, stack lifetime, and electricity price are crucial to the economic competitiveness of the system. By reducing the cost of SOE stack, extending its lifetime and reducing electricity price, the payback time can be shortened to 3–5 years. A stable supply of renewable electricity is necessary for the project investment. When the annual available hours of renewable electricity drop from 7200 to 3600, the payback time of the project increases to 21 years. Methanol synthesis with SOE co-electrolysis has an outstanding heat integration performance. The system can recover heat in a Rankine cycle to enhance the overall energy efficiency.

Suggested Citation

  • Zhang, Hanfei & Desideri, Umberto, 2020. "Techno-economic optimization of power-to-methanol with co-electrolysis of CO2 and H2O in solid-oxide electrolyzers," Energy, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220306058
    DOI: 10.1016/j.energy.2020.117498
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220306058
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2017. "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 292-312.
    2. Wang, Ligang & Pérez-Fortes, Mar & Madi, Hossein & Diethelm, Stefan & herle, Jan Van & Maréchal, François, 2018. "Optimal design of solid-oxide electrolyzer based power-to-methane systems: A comprehensive comparison between steam electrolysis and co-electrolysis," Applied Energy, Elsevier, vol. 211(C), pages 1060-1079.
    3. Clausen, Lasse R. & Houbak, Niels & Elmegaard, Brian, 2010. "Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water," Energy, Elsevier, vol. 35(5), pages 2338-2347.
    4. Hamelinck, Carlo N. & Faaij, André P.C. & den Uil, Herman & Boerrigter, Harold, 2004. "Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential," Energy, Elsevier, vol. 29(11), pages 1743-1771.
    5. Pérez-Fortes, Mar & Schöneberger, Jan C. & Boulamanti, Aikaterini & Tzimas, Evangelos, 2016. "Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment," Applied Energy, Elsevier, vol. 161(C), pages 718-732.
    6. Becker, W.L. & Braun, R.J. & Penev, M. & Melaina, M., 2012. "Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units," Energy, Elsevier, vol. 47(1), pages 99-115.
    7. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    8. Andika, Riezqa & Nandiyanto, Asep Bayu Dani & Putra, Zulfan Adi & Bilad, Muhammad Roil & Kim, Young & Yun, Choa Mun & Lee, Moonyong, 2018. "Co-electrolysis for power-to-methanol applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 227-241.
    9. Yapicioglu, Arda & Dincer, Ibrahim, 2019. "A review on clean ammonia as a potential fuel for power generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 96-108.
    10. Jeanmonod, Guillaume & Wang, Ligang & Diethelm, Stefan & Maréchal, François & Van herle, Jan, 2019. "Trade-off designs of power-to-methane systems via solid-oxide electrolyzer and the application to biogas upgrading," Applied Energy, Elsevier, vol. 247(C), pages 572-581.
    11. Cinti, Giovanni & Baldinelli, Arianna & Di Michele, Alessandro & Desideri, Umberto, 2016. "Integration of Solid Oxide Electrolyzer and Fischer-Tropsch: A sustainable pathway for synthetic fuel," Applied Energy, Elsevier, vol. 162(C), pages 308-320.
    12. Wang, Ligang & Rao, Megha & Diethelm, Stefan & Lin, Tzu-En & Zhang, Hanfei & Hagen, Anke & Maréchal, François & Van herle, Jan, 2019. "Power-to-methane via co-electrolysis of H2O and CO2: The effects of pressurized operation and internal methanation," Applied Energy, Elsevier, vol. 250(C), pages 1432-1445.
    13. Albarelli, Juliana Q. & Onorati, Sandro & Caliandro, Priscilla & Peduzzi, Emanuela & Meireles, M Angela A. & Marechal, François & Ensinas, Adriano V., 2017. "Multi-objective optimization of a sugarcane biorefinery for integrated ethanol and methanol production," Energy, Elsevier, vol. 138(C), pages 1281-1290.
    14. Phillips, V.D. & Kinoshita, C.M. & Neill, D.R. & Takahashi, P.K., 1990. "Thermochemical production of methanol from biomass in Hawaii," Applied Energy, Elsevier, vol. 35(3), pages 167-175.
    15. Al-Kalbani, Haitham & Xuan, Jin & García, Susana & Wang, Huizhi, 2016. "Comparative energetic assessment of methanol production from CO2: Chemical versus electrochemical process," Applied Energy, Elsevier, vol. 165(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choe, Changgwon & Cheon, Seunghyun & Gu, Jiwon & Lim, Hankwon, 2022. "Critical aspect of renewable syngas production for power-to-fuel via solid oxide electrolysis: Integrative assessment for potential renewable energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Svitnič, Tibor & Sundmacher, Kai, 2022. "Renewable methanol production: Optimization-based design, scheduling and waste-heat utilization with the FluxMax approach," Applied Energy, Elsevier, vol. 326(C).
    3. Lee, Boreum & Lee, Hyunjun & Lim, Dongjun & Brigljević, Boris & Cho, Wonchul & Cho, Hyun-Seok & Kim, Chang-Hee & Lim, Hankwon, 2020. "Renewable methanol synthesis from renewable H2 and captured CO2: How can power-to-liquid technology be economically feasible?," Applied Energy, Elsevier, vol. 279(C).
    4. Luis Ramirez Camargo & Gabriel Castro & Katharina Gruber & Jessica Jewell & Michael Klingler & Olga Turkovska & Elisabeth Wetterlund & Johannes Schmidt, 2022. "Pathway to a land-neutral expansion of Brazilian renewable fuel production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Anetjärvi, Eemeli & Vakkilainen, Esa & Melin, Kristian, 2023. "Benefits of hybrid production of e-methanol in connection with biomass gasification," Energy, Elsevier, vol. 276(C).
    6. Byun, Manhee & Kim, Heehyang & Lee, Hyunjun & Lim, Dongjun & Lim, Hankwon, 2022. "Conceptual design for methanol steam reforming in serial packed-bed reactors and membrane filters: Economic and environmental perspectives," Energy, Elsevier, vol. 241(C).
    7. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Arinelli, Lara de Oliveira & Brigagão, George Victor & Wiesberg, Igor Lapenda & Teixeira, Alexandre Mendonça & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F., 2022. "Carbon-dioxide-to-methanol intensification with supersonic separators: Extra-carbonated natural gas purification via carbon capture and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    2. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 270(C).
    3. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic comparison of green ammonia production processes," Applied Energy, Elsevier, vol. 259(C).
    4. Hanfei Zhang & Ligang Wang & Jan Van herle & François Maréchal & Umberto Desideri, 2019. "Techno-Economic Optimization of CO 2 -to-Methanol with Solid-Oxide Electrolyzer," Energies, MDPI, vol. 12(19), pages 1-15, September.
    5. Wang, Ligang & Chen, Ming & Küngas, Rainer & Lin, Tzu-En & Diethelm, Stefan & Maréchal, François & Van herle, Jan, 2019. "Power-to-fuels via solid-oxide electrolyzer: Operating window and techno-economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 174-187.
    6. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2021. "Techno-economic comparison of 100% renewable urea production processes," Applied Energy, Elsevier, vol. 284(C).
    7. Ali, Shahid & Sørensen, Kim & Nielsen, Mads P., 2020. "Modeling a novel combined solid oxide electrolysis cell (SOEC) - Biomass gasification renewable methanol production system," Renewable Energy, Elsevier, vol. 154(C), pages 1025-1034.
    8. Andika, Riezqa & Nandiyanto, Asep Bayu Dani & Putra, Zulfan Adi & Bilad, Muhammad Roil & Kim, Young & Yun, Choa Mun & Lee, Moonyong, 2018. "Co-electrolysis for power-to-methanol applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 227-241.
    9. Wang, Ligang & Zhang, Yumeng & Pérez-Fortes, Mar & Aubin, Philippe & Lin, Tzu-En & Yang, Yongping & Maréchal, François & Van herle, Jan, 2020. "Reversible solid-oxide cell stack based power-to-x-to-power systems: Comparison of thermodynamic performance," Applied Energy, Elsevier, vol. 275(C).
    10. Morgenthaler, Simon & Kuckshinrichs, Wilhelm & Witthaut, Dirk, 2020. "Optimal system layout and locations for fully renewable high temperature co-electrolysis," Applied Energy, Elsevier, vol. 260(C).
    11. Samuel Simon Araya & Vincenzo Liso & Xiaoti Cui & Na Li & Jimin Zhu & Simon Lennart Sahlin & Søren Højgaard Jensen & Mads Pagh Nielsen & Søren Knudsen Kær, 2020. "A Review of The Methanol Economy: The Fuel Cell Route," Energies, MDPI, vol. 13(3), pages 1-32, January.
    12. Ma, Qian & Chang, Yuan & Yuan, Bo & Song, Zhaozheng & Xue, Jinjun & Jiang, Qingzhe, 2022. "Utilizing carbon dioxide from refinery flue gas for methanol production: System design and assessment," Energy, Elsevier, vol. 249(C).
    13. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    15. Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    16. Freire Ordóñez, Diego & Shah, Nilay & Guillén-Gosálbez, Gonzalo, 2021. "Economic and full environmental assessment of electrofuels via electrolysis and co-electrolysis considering externalities," Applied Energy, Elsevier, vol. 286(C).
    17. Decker, Maximilian & Schorn, Felix & Samsun, Remzi Can & Peters, Ralf & Stolten, Detlef, 2019. "Off-grid power-to-fuel systems for a market launch scenario – A techno-economic assessment," Applied Energy, Elsevier, vol. 250(C), pages 1099-1109.
    18. Wehrle, Lukas & Schmider, Daniel & Dailly, Julian & Banerjee, Aayan & Deutschmann, Olaf, 2022. "Benchmarking solid oxide electrolysis cell-stacks for industrial Power-to-Methane systems via hierarchical multi-scale modelling," Applied Energy, Elsevier, vol. 317(C).
    19. Herz, Gregor & Reichelt, Erik & Jahn, Matthias, 2018. "Techno-economic analysis of a co-electrolysis-based synthesis process for the production of hydrocarbons," Applied Energy, Elsevier, vol. 215(C), pages 309-320.
    20. Kotowicz, J. & Brzęczek, M., 2021. "Methods to increase the efficiency of production and purification installations of renewable methanol," Renewable Energy, Elsevier, vol. 177(C), pages 568-583.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220306058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.