IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v192y2020ics0360544219323540.html
   My bibliography  Save this article

Mitigation of high pressure rise rate by varying IVC timing and EGR rate in an RCCI engine with high premixed fuel ratio

Author

Listed:
  • Li, Jing
  • Yu, Xiao
  • Xie, Jingcheng
  • Yang, Wenming

Abstract

In a reactivity controlled compression ignition (RCCI) engine, when the ratio of premixed low-reactively fuel is high, unacceptable high pressure rise rate (PRR) always occurs. The objective of this study is to find effective ways of mitigating the high PRR in and biodiesel and gasoline fueled RCCI engine. Coupled KIVA4-CHEMKIN code was used to mimic the combustion process of RCCI engine with 70% of premixed gasoline. At first, parametric studies were conducted to investigate the effects of intake valve close (IVC) timing and exhaust gas recirculation (EGR) rate, respectively. Results indicate that delaying IVC timing and increasing EGR rate could mitigate the maximum PRR. Then, a two-stage optimization was undertaken by considering IVC timing and EGR rate at one time. To guide the optimization, contour maps on indicated mean effective pressure (IMEP) and emissions were generated. It was found that high EGR rate with advanced IVC timing would lead to satisfying results. Finally, two optimal cases were identified. Comparing with the cases of varying IVC timing and EGR rate individually, while resulting same acceptable maximum PRR, the optimal cases emit much lower NO, soot and CO emissions, and achieve slightly higher thermal efficiency.

Suggested Citation

  • Li, Jing & Yu, Xiao & Xie, Jingcheng & Yang, Wenming, 2020. "Mitigation of high pressure rise rate by varying IVC timing and EGR rate in an RCCI engine with high premixed fuel ratio," Energy, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323540
    DOI: 10.1016/j.energy.2019.116659
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219323540
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116659?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. An, H. & Yang, W.M. & Maghbouli, A. & Chou, S.K. & Chua, K.J., 2013. "Detailed physical properties prediction of pure methyl esters for biodiesel combustion modeling," Applied Energy, Elsevier, vol. 102(C), pages 647-656.
    2. Duraisamy, Ganesh & Rangasamy, Murugan & Govindan, Nagarajan, 2020. "A comparative study on methanol/diesel and methanol/PODE dual fuel RCCI combustion in an automotive diesel engine," Renewable Energy, Elsevier, vol. 145(C), pages 542-556.
    3. Li, Yaopeng & Jia, Ming & Liu, Yaodong & Xie, Maozhao, 2013. "Numerical study on the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine," Applied Energy, Elsevier, vol. 106(C), pages 184-197.
    4. Chao, Yu & Zhi, Wang & Jianxin, Wang, 2014. "Sequenced combustion characteristics, emission and thermal efficiency in gasoline homogeneous charge induced ignition," Applied Energy, Elsevier, vol. 124(C), pages 343-353.
    5. Han, Weiqiang & Li, Bolun & Pan, Suozhu & Lu, Yao & Li, Xin, 2018. "Combined effect of inlet pressure, total cycle energy, and start of injection on low load reactivity controlled compression ignition combustion and emission characteristics in a multi-cylinder heavy-d," Energy, Elsevier, vol. 165(PB), pages 846-858.
    6. Maghbouli, Amin & Yang, Wenming & An, Hui & Li, Jing & Chou, Siaw Kiang & Chua, Kian Jon, 2013. "An advanced combustion model coupled with detailed chemical reaction mechanism for D.I diesel engine simulation," Applied Energy, Elsevier, vol. 111(C), pages 758-770.
    7. Li, Jing & Ling, Xiang & Liu, Deng & Yang, Wenming & Zhou, Dezhi, 2018. "Numerical study on double injection techniques in a gasoline and biodiesel fueled RCCI (reactivity controlled compression ignition) engine," Applied Energy, Elsevier, vol. 211(C), pages 382-392.
    8. Li, Yaopeng & Jia, Ming & Chang, Yachao & Liu, Yaodong & Xie, Maozhao & Wang, Tianyou & Zhou, Lei, 2014. "Parametric study and optimization of a RCCI (reactivity controlled compression ignition) engine fueled with methanol and diesel," Energy, Elsevier, vol. 65(C), pages 319-332.
    9. Molina, S. & García, A. & Pastor, J.M. & Belarte, E. & Balloul, I., 2015. "Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine," Applied Energy, Elsevier, vol. 143(C), pages 211-227.
    10. Ansari, Ehsan & Shahbakhti, Mahdi & Naber, Jeffrey, 2018. "Optimization of performance and operational cost for a dual mode diesel-natural gas RCCI and diesel combustion engine," Applied Energy, Elsevier, vol. 231(C), pages 549-561.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Jinxing & Fu, Rui & Wang, Sen & Xu, Hongchang & Yuan, Zhiyuan, 2022. "Fuel economy improvement of a turbocharged gasoline SI engine through combining cooled EGR and high compression ratio," Energy, Elsevier, vol. 239(PE).
    2. Wang, Yi & He, Guanzhang & Huang, Haozhong & Guo, Xiaoyu & Xing, Kongzhao & Liu, Songtao & Tu, Zhanfei & Xia, Qi, 2023. "Thermodynamic and exergy analysis of high compression ratio coupled with late intake valve closing to improve thermal efficiency of two-stage turbocharged diesel engines," Energy, Elsevier, vol. 268(C).
    3. Sokratis Stoumpos & Gerasimos Theotokatos, 2020. "Multiobjective Optimisation of a Marine Dual Fuel Engine Equipped with Exhaust Gas Recirculation and Air Bypass Systems," Energies, MDPI, vol. 13(19), pages 1-20, September.
    4. Zhao, Wenbin & Wu, Haoqing & Mi, Shijie & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2023. "Experimental investigation of the control strategy of high load extension under iso-butanol/biodiesel dual-fuel intelligent charge compression ignition (ICCI) mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    5. Kan, Xiang & Wei, Liping & Li, Xian & Li, Han & Zhou, Dezhi & Yang, Wenming & Wang, Chi-Hwa, 2020. "Effects of the three dual-fuel strategies on performance and emissions of a biodiesel engine," Applied Energy, Elsevier, vol. 262(C).
    6. Deng, Xiaorong & Li, Jing & Liang, Yifei & Yang, Wenming, 2023. "Dual-fuel engines fueled with n-butanol/n-octanol and n-butanol/DNBE: A comparative study of combustion and emissions characteristics," Energy, Elsevier, vol. 263(PC).
    7. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    8. Shirvani, Sasan & Shirvani, Saeid & Shamekhi, Amir H. & Reitz, Rolf & Salehi, Fatemeh, 2021. "Meeting EURO6 emission regulations by multi-objective optimization of the injection strategy of two direct injectors in a DDFS engine," Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jing & Yang, Wenming & Zhou, Dezhi, 2017. "Review on the management of RCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 65-79.
    2. Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
    3. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Kakati, Dipankar & Biswas, Srijit & Banerjee, Rahul, 2021. "Parametric sensitivity analysis of split injection coupled varying methanol induced reactivity strategies on the exergy efficiency enhancement and emission reductions objectives in a biodiesel fuelled," Energy, Elsevier, vol. 225(C).
    5. Li, Jing & Ling, Xiang & Liu, Deng & Yang, Wenming & Zhou, Dezhi, 2018. "Numerical study on double injection techniques in a gasoline and biodiesel fueled RCCI (reactivity controlled compression ignition) engine," Applied Energy, Elsevier, vol. 211(C), pages 382-392.
    6. Wei Tian & Hongchuan Zhang & Lenian Wang & Zhiqiang Han & Wenbin Yu, 2020. "Effect of Premixed n-Butanol Ratio on the Initial Stage of Combustion in a Light-Duty Butanol/Diesel Dual-Fuel Engine," Energies, MDPI, vol. 13(17), pages 1-10, August.
    7. Dongzhi Gao & Mubasher Ikram & Chao Geng & Yangyi Wu & Xiaodan Li & Chao Jin & Zunqing Zheng & Mengliang Li & Haifeng Liu, 2023. "Effects of Anhydrous and Hydrous Fusel Oil on Combustion and Emissions on a Heavy-Duty Compression-Ignition Engine," Energies, MDPI, vol. 16(17), pages 1-14, August.
    8. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    9. Zhong, Yingzi & Han, Weiqiang & Jin, Chao & Tian, Xiaocong & Liu, Haifeng, 2022. "Study on effects of the hydroxyl group position and carbon chain length on combustion and emission characteristics of Reactivity Controlled Compression Ignition (RCCI) engine fueled with low-carbon st," Energy, Elsevier, vol. 239(PC).
    10. Han, Weiqiang & Li, Bolun & Pan, Suozhu & Lu, Yao & Li, Xin, 2018. "Combined effect of inlet pressure, total cycle energy, and start of injection on low load reactivity controlled compression ignition combustion and emission characteristics in a multi-cylinder heavy-d," Energy, Elsevier, vol. 165(PB), pages 846-858.
    11. Li, Jing & Yang, Wen Ming & Goh, Thong Ngee & An, Hui & Maghbouli, Amin, 2014. "Study on RCCI (reactivity controlled compression ignition) engine by means of statistical experimental design," Energy, Elsevier, vol. 78(C), pages 777-787.
    12. Wenming, Yang & Meng, Yang, 2019. "Phi-T map analysis on RCCI engine fueled by methanol and biodiesel," Energy, Elsevier, vol. 187(C).
    13. Shen, Zhaojie & Wang, Xinyan & Zhao, Hua & Lin, Bo & Shen, Yitao & Yang, Jianguo, 2021. "Numerical investigation of natural gas-diesel dual-fuel engine with different piston geometries and radial clearances," Energy, Elsevier, vol. 220(C).
    14. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & Zhang, Qiankun & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion – Part Ⅰ: Characteristics from medium to ," Energy, Elsevier, vol. 246(C).
    15. Wei, Lijiang & Yao, Chunde & Han, Guopeng & Pan, Wang, 2016. "Effects of methanol to diesel ratio and diesel injection timing on combustion, performance and emissions of a methanol port premixed diesel engine," Energy, Elsevier, vol. 95(C), pages 223-232.
    16. Ayat Gharehghani & Alireza Kakoee & Amin Mahmoudzadeh Andwari & Thanos Megaritis & Apostolos Pesyridis, 2021. "Numerical Investigation of an RCCI Engine Fueled with Natural Gas/Dimethyl-Ether in Various Injection Strategies," Energies, MDPI, vol. 14(6), pages 1-25, March.
    17. Liu, Junheng & Wu, Pengcheng & Ji, Qian & Sun, Ping & Wang, Pan & Meng, Zhongwei & Ma, Hongjie, 2022. "Experimental study on effects of pilot injection strategy on combustion and emission characteristics of diesel/methanol dual-fuel engine under low load," Energy, Elsevier, vol. 247(C).
    18. Zhao, Feiyang & Yang, Wenming & Yu, Wenbin & Li, Han & Sim, Yu Yun & Liu, Teng & Tay, Kun Lin, 2018. "Numerical study of soot particles from low temperature combustion of engine fueled with diesel fuel and unsaturation biodiesel fuels," Applied Energy, Elsevier, vol. 211(C), pages 187-193.
    19. Ganesh, Duraisamy & Ayyappan, P.R. & Murugan, Rangasamy, 2019. "Experimental investigation of iso-butanol/diesel reactivity controlled compression ignition combustion in a non-road diesel engine," Applied Energy, Elsevier, vol. 242(C), pages 1307-1319.
    20. Lee, Seungpil & Park, Sungwook, 2017. "Optimization of the piston bowl geometry and the operating conditions of a gasoline-diesel dual-fuel engine based on a compression ignition engine," Energy, Elsevier, vol. 121(C), pages 433-448.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.