IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v190y2020ics0360544219321693.html
   My bibliography  Save this article

Simulation studies on microwave-assisted pyrolysis of biomass for bioenergy production with special attention on waveguide number and location

Author

Listed:
  • Mohd Mokhta, Zafri
  • Ong, Mei Yin
  • Salman, Bello
  • Nomanbhay, Saifuddin
  • Salleh, Siti Fatihah
  • Chew, Kit Wayne
  • Show, Pau-Loke
  • Chen, Wei-Hsin

Abstract

The society’s concern has moved toward sustainability nowadays and hence, the conversion of biomass into biofuels, through pyrolysis process, is one of the current research trends. Green processing technologies, like microwave heating, has been suggested to replace the conventional heating for biomass conversion as it provides energy-efficient heating and reduces time consumption. In this work, COMSOL Multiphysics software was used to study the effects of the waveguide position (bottom-fed vs side-fed) and unit (single-fed vs double-fed) on the electromagnetic field and heat distribution profile within the sample. Based on the results, the double-fed microwave can achieve higher maximum temperature (462 °C) at the same simulation time, followed by the single bottom-fed reactor (404 °C). An extension to the investigated work with more than two waveguides has shown that it will neither improve the electric field distribution nor increase the maximum temperature. This work concludes that both the position and unit of the waveguide are highly influential factors in determining the quality and speed of the biomass heating process. The double-fed microwave is the most suitable design to accelerate the pyrolysis process. The assumption of this simulation study is further validated as there is only ∼5% difference between simulations and experiments.

Suggested Citation

  • Mohd Mokhta, Zafri & Ong, Mei Yin & Salman, Bello & Nomanbhay, Saifuddin & Salleh, Siti Fatihah & Chew, Kit Wayne & Show, Pau-Loke & Chen, Wei-Hsin, 2020. "Simulation studies on microwave-assisted pyrolysis of biomass for bioenergy production with special attention on waveguide number and location," Energy, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:energy:v:190:y:2020:i:c:s0360544219321693
    DOI: 10.1016/j.energy.2019.116474
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219321693
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Tu, Yi-Jian & Sheen, Herng-Kuang, 2011. "Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating," Applied Energy, Elsevier, vol. 88(8), pages 2726-2734, August.
    2. Norfadhilah Hamzah & Koji Tokimatsu & Kunio Yoshikawa, 2019. "Solid Fuel from Oil Palm Biomass Residues and Municipal Solid Waste by Hydrothermal Treatment for Electrical Power Generation in Malaysia: A Review," Sustainability, MDPI, vol. 11(4), pages 1-23, February.
    3. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    4. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    5. Chen, Wei-Hsin & Ye, Song-Ching & Sheen, Herng-Kuang, 2012. "Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment," Applied Energy, Elsevier, vol. 93(C), pages 237-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yaning & Ke, Cunfeng & Fu, Wenming & Cui, Yunlei & Rehan, Mirza Abdullah & Li, Bingxi, 2020. "Simulation of microwave-assisted gasification of biomass: A review," Renewable Energy, Elsevier, vol. 154(C), pages 488-496.
    2. Hasan, Md. Yeasir & Monir, Minhaj Uddin & Ahmed, Mohammad Tofayal & Aziz, Azrina Abd & Shovon, Shaik Muntasir & Ahamed Akash, Faysal & Hossain Khan, Mohammad Forrukh & Faruque, Md. Jamal & Islam Rifat, 2022. "Sustainable energy sources in Bangladesh: A review on present and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Liang, Cun-Guang & Guo, Ze-Shi & Yue, Xiu & Li, Hui & Ma, Peng-Cheng, 2023. "Microwave-assisted breakage of basalt: A viewpoint on analyzing the thermal and mechanical behavior of rock," Energy, Elsevier, vol. 273(C).
    4. Li, Boyu & Fan, Xing & Yu, Senshen & Xia, Hongying & Nong, Yonghong & Bian, Junping & Sun, Mingyu & Zi, Wenhua, 2023. "Microwave heating of biomass waste residues for sustainable bioenergy and biomass materials preparation: A parametric simulation study," Energy, Elsevier, vol. 274(C).
    5. Siddique, Istiaq Jamil & Salema, Arshad Adam, 2023. "Unraveling the metallic thermocouple effects during microwave heating of biomass," Energy, Elsevier, vol. 267(C).
    6. Mei Yin Ong & Saifuddin Nomanbhay & Fitranto Kusumo & Raja Mohamad Hafriz Raja Shahruzzaman & Abd Halim Shamsuddin, 2021. "Modeling and Optimization of Microwave-Based Bio-Jet Fuel from Coconut Oil: Investigation of Response Surface Methodology (RSM) and Artificial Neural Network Methodology (ANN)," Energies, MDPI, vol. 14(2), pages 1-17, January.
    7. Fia, A.Z. & Amorim, J., 2021. "Heating of biomass in microwave household oven - A numerical study," Energy, Elsevier, vol. 218(C).
    8. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    9. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ocreto, Jherwin B. & Chen, Wei-Hsin & Ubando, Aristotle T. & Park, Young-Kwon & Sharma, Amit Kumar & Ashokkumar, Veeramuthu & Ok, Yong Sik & Kwon, Eilhann E. & Rollon, Analiza P. & De Luna, Mark Danie, 2021. "A critical review on second- and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Kumar, Sachin & Dheeran, Pratibha & Singh, Surendra P. & Mishra, Indra M. & Adhikari, Dilip K., 2015. "Kinetic studies of two-stage sulphuric acid hydrolysis of sugarcane bagasse," Renewable Energy, Elsevier, vol. 83(C), pages 850-858.
    3. Yu, Kai Ling & Chen, Wei-Hsin & Sheen, Herng-Kuang & Chang, Jo-Shu & Lin, Chih-Sheng & Ong, Hwai Chyuan & Show, Pau Loke & Ng, Eng-Poh & Ling, Tau Chuan, 2020. "Production of microalgal biochar and reducing sugar using wet torrefaction with microwave-assisted heating and acid hydrolysis pretreatment," Renewable Energy, Elsevier, vol. 156(C), pages 349-360.
    4. Peng, Huadong & Chen, Hongzhang & Qu, Yongshui & Li, Hongqiang & Xu, Jian, 2014. "Bioconversion of different sizes of microcrystalline cellulose pretreated by microwave irradiation with/without NaOH," Applied Energy, Elsevier, vol. 117(C), pages 142-148.
    5. Chen, Wei-Hsin & Lu, Ke-Miao & Tsai, Chi-Ming, 2012. "An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction," Applied Energy, Elsevier, vol. 100(C), pages 318-325.
    6. Kostas, Emily T. & Beneroso, Daniel & Robinson, John P., 2017. "The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 12-27.
    7. Moretti, Marcia Maria de Souza & Bocchini-Martins, Daniela Alonso & Nunes, Christiane da Costa Carreira & Villena, Maria Arévalo & Perrone, Olavo Micali & Silva, Roberto da & Boscolo, Maurício & Gomes, 2014. "Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis," Applied Energy, Elsevier, vol. 122(C), pages 189-195.
    8. Zhu, Shengdong & Huang, Wenjing & Huang, Wangxiang & Wang, Ke & Chen, Qiming & Wu, Yuanxin, 2015. "Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent," Applied Energy, Elsevier, vol. 154(C), pages 190-196.
    9. Barakat, Abdellatif & Monlau, Florian & Solhy, Abderrahim & Carrere, Hélène, 2015. "Mechanical dissociation and fragmentation of lignocellulosic biomass: Effect of initial moisture, biochemical and structural proprieties on energy requirement," Applied Energy, Elsevier, vol. 142(C), pages 240-246.
    10. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    11. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    12. Anca-Couce, A. & Hochenauer, C. & Scharler, R., 2021. "Bioenergy technologies, uses, market and future trends with Austria as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
    14. Junshen Qu & Daiying Wang & Zeyu Deng & Hejie Yu & Jianjun Dai & Xiaotao Bi, 2023. "Biochar Prepared by Microwave-Assisted Co-Pyrolysis of Sewage Sludge and Cotton Stalk: A Potential Soil Conditioner," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    15. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    16. Ge, Shengbo & Yek, Peter Nai Yuh & Cheng, Yoke Wang & Xia, Changlei & Wan Mahari, Wan Adibah & Liew, Rock Keey & Peng, Wanxi & Yuan, Tong-Qi & Tabatabaei, Meisam & Aghbashlo, Mortaza & Sonne, Christia, 2021. "Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Qu, Guangfei & Lv, Pei & Cai, Yingying & Tu, Can & Ma, Xi & Ning, Ping, 2020. "Enhanced anaerobic fermentation of dairy manure by microelectrolysis in electric and magnetic fields," Renewable Energy, Elsevier, vol. 146(C), pages 2758-2765.
    18. Jason Yi Juang Yeo & Bing Shen How & Sin Yong Teng & Wei Dong Leong & Wendy Pei Qin Ng & Chun Hsion Lim & Sue Lin Ngan & Jaka Sunarso & Hon Loong Lam, 2020. "Synthesis of Sustainable Circular Economy in Palm Oil Industry Using Graph-Theoretic Method," Sustainability, MDPI, vol. 12(19), pages 1-29, September.
    19. Xia, Ao & Cheng, Jun & Lin, Richen & Ding, Lingkan & Zhou, Junhu & Cen, Kefa, 2013. "Combination of hydrogen fermentation and methanogenesis to enhance energy conversion efficiency from trehalose," Energy, Elsevier, vol. 55(C), pages 631-637.
    20. Vaz, Fernanda Leitão & da Rocha Lins, Jennyfer & Alves Alencar, Bárbara Ribeiro & Silva de Abreu, Íthalo Barbosa & Vidal, Esteban Espinosa & Ribeiro, Ester & Valadares de Sá Barretto Sampaio, Everardo, 2021. "Chemical pretreatment of sugarcane bagasse with liquid fraction recycling," Renewable Energy, Elsevier, vol. 174(C), pages 666-673.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:190:y:2020:i:c:s0360544219321693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.