IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v187y2019ics0360544219315750.html
   My bibliography  Save this article

ASPEN dynamics simulation for combined cycle power plant – Validation with hot start-up measurement

Author

Listed:
  • Sabia, Gabriele
  • Heinze, Christian
  • Alobaid, Falah
  • Martelli, Emanuele
  • Epple, Bernd

Abstract

Since the beginning of energy market liberalization, shutdown and start-up phases of thermal power plants have acquired greater importance. Dynamic simulation is a helpful tool due to its possibility of predicting the behaviour of the power plant with a good degree of accuracy. This paper goes into the details of the hot start-up phase of a combined cycle power plant with three-pressure level heat recovery steam generator, analysing the capability of the software ASPEN Plus Dynamic through a dynamic comparison between the numerical results and the real operation data. The developed model is built according to the design data of an actual plant including heat exchangers, pipes, turbines, valves, pumps and so on. Good agreements between measurement and simulation results, with some discrepancies in the first phase of the start-up, have been found and then discussed. Best deviation values are obtained for the temperature where the maximum relative error is 3.62% in the re-heater section. Worst deviation values are obtained for the pressure where the maximum relative error shown is 10.8%. Further possible improvements of the model and future applications are suggested.

Suggested Citation

  • Sabia, Gabriele & Heinze, Christian & Alobaid, Falah & Martelli, Emanuele & Epple, Bernd, 2019. "ASPEN dynamics simulation for combined cycle power plant – Validation with hot start-up measurement," Energy, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219315750
    DOI: 10.1016/j.energy.2019.115897
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219315750
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.115897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2015. "Dynamic behaviour analysis of a three pressure level heat recovery steam generator during transient operation," Energy, Elsevier, vol. 90(P2), pages 1595-1605.
    2. Granville E. Paules & Christodoulos A. Floudas, 1989. "APROS: Algorithmic Development Methodology for Discrete-Continuous Optimization Problems," Operations Research, INFORMS, vol. 37(6), pages 902-915, December.
    3. Elsido, Cristina & Martelli, Emanuele & Kreutz, Thomas, 2019. "Heat integration and heat recovery steam cycle optimization for a low-carbon lignite/biomass-to-jet fuel demonstration project," Applied Energy, Elsevier, vol. 239(C), pages 1322-1342.
    4. Alobaid, Falah & Karner, Karl & Belz, Jörg & Epple, Bernd & Kim, Hyun-Gee, 2014. "Numerical and experimental study of a heat recovery steam generator during start-up procedure," Energy, Elsevier, vol. 64(C), pages 1057-1070.
    5. Martelli, Emanuele & Nord, Lars O. & Bolland, Olav, 2012. "Design criteria and optimization of heat recovery steam cycles for integrated reforming combined cycles with CO2 capture," Applied Energy, Elsevier, vol. 92(C), pages 255-268.
    6. Shin, J.Y. & Jeon, Y.J. & Maeng, D.J. & Kim, J.S. & Ro, S.T., 2002. "Analysis of the dynamic characteristics of a combined-cycle power plant," Energy, Elsevier, vol. 27(12), pages 1085-1098.
    7. Martelli, Emanuele & Kreutz, Thomas & Carbo, Michiel & Consonni, Stefano & Jansen, Daniel, 2011. "Shell coal IGCCS with carbon capture: Conventional gas quench vs. innovative configurations," Applied Energy, Elsevier, vol. 88(11), pages 3978-3989.
    8. Alobaid, Falah & Pfeiffer, Stefan & Epple, Bernd & Seon, Chil-Yeong & Kim, Hyun-Gee, 2012. "Fast start-up analyses for Benson heat recovery steam generator," Energy, Elsevier, vol. 46(1), pages 295-309.
    9. Manassaldi, Juan I. & Arias, Ana M. & Scenna, Nicolás J. & Mussati, Miguel C. & Mussati, Sergio F., 2016. "A discrete and continuous mathematical model for the optimal synthesis and design of dual pressure heat recovery steam generators coupled to two steam turbines," Energy, Elsevier, vol. 103(C), pages 807-823.
    10. Zhang, Jianyun & Liu, Pei & Zhou, Zhe & Ma, Linwei & Li, Zheng & Ni, Weidou, 2014. "A mixed-integer nonlinear programming approach to the optimal design of heat network in a polygeneration energy system," Applied Energy, Elsevier, vol. 114(C), pages 146-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zima, Wiesław & Grądziel, Sławomir & Cebula, Artur & Rerak, Monika & Kozak-Jagieła, Ewa & Pilarczyk, Marcin, 2023. "Mathematical model of a power boiler operation under rapid thermal load changes," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    2. Taler, Jan & Taler, Dawid & Kaczmarski, Karol & Dzierwa, Piotr & Trojan, Marcin & Sobota, Tomasz, 2018. "Monitoring of thermal stresses in pressure components based on the wall temperature measurement," Energy, Elsevier, vol. 160(C), pages 500-519.
    3. Angerer, Michael & Kahlert, Steffen & Spliethoff, Hartmut, 2017. "Transient simulation and fatigue evaluation of fast gas turbine startups and shutdowns in a combined cycle plant with an innovative thermal buffer storage," Energy, Elsevier, vol. 130(C), pages 246-257.
    4. Elsido, Cristina & Martelli, Emanuele & Kreutz, Thomas, 2019. "Heat integration and heat recovery steam cycle optimization for a low-carbon lignite/biomass-to-jet fuel demonstration project," Applied Energy, Elsevier, vol. 239(C), pages 1322-1342.
    5. Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
    6. Romero-Anton, N. & Martin-Escudero, K. & Portillo-Valdés, L.A. & Gómez-Elvira, I. & Salazar-Herran, E., 2018. "Improvement of auxiliary BI-DRUM boiler operation by dynamic simulation," Energy, Elsevier, vol. 148(C), pages 676-686.
    7. Kreutz, Thomas G. & Larson, Eric D. & Elsido, Cristina & Martelli, Emanuele & Greig, Chris & Williams, Robert H., 2020. "Techno-economic prospects for producing Fischer-Tropsch jet fuel and electricity from lignite and woody biomass with CO2 capture for EOR," Applied Energy, Elsevier, vol. 279(C).
    8. Katulić, Stjepko & Čehil, Mislav & Schneider, Daniel Rolph, 2018. "Thermodynamic efficiency improvement of combined cycle power plant's bottom cycle based on organic working fluids," Energy, Elsevier, vol. 147(C), pages 36-50.
    9. Rossi, Iacopo & Sorce, Alessandro & Traverso, Alberto, 2017. "Gas turbine combined cycle start-up and stress evaluation: A simplified dynamic approach," Applied Energy, Elsevier, vol. 190(C), pages 880-890.
    10. Beiron, Johanna & Montañés, Rubén M. & Normann, Fredrik & Johnsson, Filip, 2020. "Flexible operation of a combined cycle cogeneration plant – A techno-economic assessment," Applied Energy, Elsevier, vol. 278(C).
    11. Farahani, Yaser & Jafarian, Ali & Mahdavi Keshavar, Omid, 2022. "Dynamic simulation of a hybrid once-through and natural circulation Heat Recovery Steam Generator (HRSG)," Energy, Elsevier, vol. 242(C).
    12. Wang, Chaoyang & Liu, Ming & Li, Bingxin & Liu, Yiwen & Yan, Junjie, 2017. "Thermodynamic analysis on the transient cycling of coal-fired power plants: Simulation study of a 660 MW supercritical unit," Energy, Elsevier, vol. 122(C), pages 505-527.
    13. Mertens, Nicolas & Alobaid, Falah & Starkloff, Ralf & Epple, Bernd & Kim, Hyun-Gee, 2015. "Comparative investigation of drum-type and once-through heat recovery steam generator during start-up," Applied Energy, Elsevier, vol. 144(C), pages 250-260.
    14. Alobaid, Falah & Al-Maliki, Wisam Abed Kattea & Lanz, Thomas & Haaf, Martin & Brachthäuser, Andreas & Epple, Bernd & Zorbach, Ingo, 2018. "Dynamic simulation of a municipal solid waste incinerator," Energy, Elsevier, vol. 149(C), pages 230-249.
    15. Benato, A. & Bracco, S. & Stoppato, A. & Mirandola, A., 2016. "LTE: A procedure to predict power plants dynamic behaviour and components lifetime reduction during transient operation," Applied Energy, Elsevier, vol. 162(C), pages 880-891.
    16. Hentschel, Julia & Zindler, Henning & Spliethoff, Hartmut, 2017. "Modelling and transient simulation of a supercritical coal-fired power plant: Dynamic response to extended secondary control power output," Energy, Elsevier, vol. 137(C), pages 927-940.
    17. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    18. Mauger, Gedeon & Tauveron, Nicolas & Bentivoglio, Fabrice & Ruby, Alain, 2019. "On the dynamic modeling of Brayton cycle power conversion systems with the CATHARE-3 code," Energy, Elsevier, vol. 168(C), pages 1002-1016.
    19. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    20. Subramanian, Navaneethan & Madejski, Paweł, 2023. "Analysis of CO2 capture process from flue-gases in combined cycle gas turbine power plant using post-combustion capture technology," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219315750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.