IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v183y2019icp106-115.html
   My bibliography  Save this article

Experimental research on charge determination and accumulator behavior in trans-critical CO2 mobile air-conditioning system

Author

Listed:
  • Wang, Dandong
  • Zhang, Zhenyu
  • Yu, Binbin
  • Wang, Xinnan
  • Shi, Junye
  • Chen, Jiangping

Abstract

Natural refrigerant CO2 (R744) is one of next generation refrigerants in mobile air conditioner (MAC) application with superior environmental and heating performance. This paper investigated the charge characteristics and refrigerant migration behavior of a trans-critical CO2 MAC. A novel visualized accumulator with five observation mirrors was adopted to set up this CO2 MAC. A series of steady-state system experiments were carried out in a calorimeter facility to reveal the effects of refrigerant charge and EXV opening on system performance and accumulator behavior. In addition, the transient migration behavior of refrigerant during shutdown and start-up and the flow behavior of lubricant oil with 0.5 mm oil return hole were studied experimentally. It is found that a plateau region with optimal system performance occurred between 1100 g and 1600 g refrigerant charge. When the return hole becomes small, stratification of lubricant oil and liquid refrigerant was found in the accumulator.

Suggested Citation

  • Wang, Dandong & Zhang, Zhenyu & Yu, Binbin & Wang, Xinnan & Shi, Junye & Chen, Jiangping, 2019. "Experimental research on charge determination and accumulator behavior in trans-critical CO2 mobile air-conditioning system," Energy, Elsevier, vol. 183(C), pages 106-115.
  • Handle: RePEc:eee:energy:v:183:y:2019:i:c:p:106-115
    DOI: 10.1016/j.energy.2019.06.116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219312484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Fei & Zhang, Guiying & Xue, Qingfeng & Zou, Huiming & Tian, Changqing, 2017. "Experimental investigation and theoretical analysis of heat pump systems with two different injection portholes compressors for electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 2085-2093.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yulong Song & Hongsheng Xie & Mengying Yang & Xiangyu Wei & Feng Cao & Xiang Yin, 2023. "A Comprehensive Assessment of the Refrigerant Charging Amount on the Global Performance of a Transcritical CO 2 -Based Bus Air Conditioning and Heat Pump System," Energies, MDPI, vol. 16(6), pages 1-21, March.
    2. Hongzeng Ji & Jinchen Pei & Jingyang Cai & Chen Ding & Fen Guo & Yichun Wang, 2023. "Review of Recent Advances in Transcritical CO 2 Heat Pump and Refrigeration Cycles and Their Development in the Vehicle Field," Energies, MDPI, vol. 16(10), pages 1-21, May.
    3. Han, Binglong & Xiong, Tong & Xu, Shijie & Liu, Guoqiang & Yan, Gang, 2022. "Parametric study of a room air conditioner during defrosting cycle based on a modified defrosting model," Energy, Elsevier, vol. 238(PA).
    4. Wang, Haidan & Song, Yulong & Qiao, Yiyou & Li, Shengbo & Cao, Feng, 2022. "Rational assessment and selection of air source heat pump system operating with CO2 and R407C for electric bus," Renewable Energy, Elsevier, vol. 182(C), pages 86-101.
    5. Song, Yulong & Wang, Haidan & Ma, Yuan & Yin, Xiang & Cao, Feng, 2022. "Energetic, economic, environmental investigation of carbon dioxide as the refrigeration alternative in new energy bus/railway vehicles’ air conditioning systems," Applied Energy, Elsevier, vol. 305(C).
    6. Kang Li & Jun Yu & Mingkang Liu & Dan Xu & Lin Su & Yidong Fang, 2020. "A Study of Optimal Refrigerant Charge Amount Determination for Air-Conditioning Heat Pump System in Electric Vehicles," Energies, MDPI, vol. 13(3), pages 1-18, February.
    7. Konrad, Mary Elizabeth & MacDonald, Brendan D., 2023. "Cold climate air source heat pumps: Industry progress and thermodynamic analysis of market-available residential units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Jongho & Jeon, Yongseok & Cho, Wonhee & Kim, Yongchan, 2020. "Effects of injection-port angle and internal heat exchanger length in vapor injection heat pumps for electric vehicles," Energy, Elsevier, vol. 193(C).
    2. Yubo Zhang & Bin Peng & Pengcheng Zhang & Jian Sun & Zhixiang Liao, 2024. "Key Technologies and Application of Electric Scroll Compressors: A Review," Energies, MDPI, vol. 17(7), pages 1-18, April.
    3. Yuan, Zhipeng & Liu, Qi & Luo, Baojun & Li, Zhenming & Fu, Jianqin & Chen, Jingwei, 2018. "Thermodynamic analysis of different oil flooded compression enhanced vapor injection cycles," Energy, Elsevier, vol. 154(C), pages 553-560.
    4. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    5. Zhang, Nan & Lu, Yiji & Kadam, Sambhaji & Yu, Zhibin, 2023. "A fuel cell range extender integrating with heat pump for cabin heat and power generation," Applied Energy, Elsevier, vol. 348(C).
    6. Zou, Huiming & Li, Xuan & Tang, Mingsheng & Wu, Jiang & Tian, Changqing & Butrymowicz, Dariusz & Ma, Yongde & Wang, Jin, 2020. "Temperature stage matching and experimental investigation of high-temperature cascade heat pump with vapor injection," Energy, Elsevier, vol. 212(C).
    7. Li, Sihui & Gong, Guangcai & Peng, Jinqing, 2019. "Dynamic coupling method between air-source heat pumps and buildings in China’s hot-summer/cold-winter zone," Applied Energy, Elsevier, vol. 254(C).
    8. Kim, Dongwoo & Song, Kang Sub & Lim, Junyub & Kim, Yongchan, 2018. "Analysis of two-phase injection heat pump using artificial neural network considering APF and LCCP under various weather conditions," Energy, Elsevier, vol. 155(C), pages 117-127.
    9. Kim, Dongwoo & Chung, Hyun Joon & Jeon, Yongseok & Jang, Dong Soo & Kim, Yongchan, 2017. "Optimization of the injection-port geometries of a vapor injection scroll compressor based on SCOP under various climatic conditions," Energy, Elsevier, vol. 135(C), pages 442-454.
    10. Han, Xinxin & Zou, Huiming & Wu, Jiang & Tian, Changqing & Tang, Mingsheng & Huang, Guangyan, 2020. "Investigation on the heating performance of the heat pump with waste heat recovery for the electric bus," Renewable Energy, Elsevier, vol. 152(C), pages 835-848.
    11. Han, Gwangwoo & Joo, Hong-Jin & Lim, Hee-Won & An, Young-Sub & Lee, Wang-Je & Lee, Kyoung-Ho, 2023. "Data-driven heat pump operation strategy using rainbow deep reinforcement learning for significant reduction of electricity cost," Energy, Elsevier, vol. 270(C).
    12. Kim, Dongwoo & Myeong, Seongryeol & Cha, Dowon & Kim, Yongchan, 2019. "Novel optimized operating strategies of two-phase injection heat pumps for achieving best performance with safe compression," Energy, Elsevier, vol. 187(C).
    13. Wang, L.W. & Jiang, L. & Gao, J. & Gao, P. & Wang, R.Z., 2017. "Analysis of resorption working pairs for air conditioners of electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 594-603.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:183:y:2019:i:c:p:106-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.