IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v171y2019icp535-546.html
   My bibliography  Save this article

Stochastic programming-based optimal bidding of compressed air energy storage with wind and thermal generation units in energy and reserve markets

Author

Listed:
  • Akbari, Ebrahim
  • Hooshmand, Rahmat-Allah
  • Gholipour, Mehdi
  • Parastegari, Moein

Abstract

One effective way to compensate for uncertainties is the use and management of energy storage. Therefore, a new method based on stochastic programming (SP) is proposed here, for optimal bidding of a generating company (GenCo) owning a compressed air energy storage (CAES) along with wind and thermal units to maximize profits. This scheduling has been presented for the GenCo's participation in day-ahead energy and spinning reserve (SR) markets and CVaR is also considered as a risk-controlling index. Firstly, the obtained results are validated by comparing with those of two previous studies. Then, the complete results of the proposed method are presented on a real power system, which indicate the capability of SP in scheduling CAES units. Furthermore, it is observed that CAES units can gain greater profits in joint energy and reserve markets due to their high ramp rates. In addition, the value of stochastic solution (VSS) is used to quantify the advantage of the stochastic method over a deterministic one, which illustrates the advantage of SP-based optimal bidding method especially for CAES and wind units and also for risk-averse GenCos. Overall, it is concluded that the stochastic method is efficient for optimal-bidding of GenCos owning CAES and wind units.

Suggested Citation

  • Akbari, Ebrahim & Hooshmand, Rahmat-Allah & Gholipour, Mehdi & Parastegari, Moein, 2019. "Stochastic programming-based optimal bidding of compressed air energy storage with wind and thermal generation units in energy and reserve markets," Energy, Elsevier, vol. 171(C), pages 535-546.
  • Handle: RePEc:eee:energy:v:171:y:2019:i:c:p:535-546
    DOI: 10.1016/j.energy.2019.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219300167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    2. Nojavan, Sayyad & Najafi-Ghalelou, Afshin & Majidi, Majid & Zare, Kazem, 2018. "Optimal bidding and offering strategies of merchant compressed air energy storage in deregulated electricity market using robust optimization approach," Energy, Elsevier, vol. 142(C), pages 250-257.
    3. Marano, Vincenzo & Rizzo, Gianfranco & Tiano, Francesco Antonio, 2012. "Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage," Applied Energy, Elsevier, vol. 97(C), pages 849-859.
    4. Abbaspour, M. & Satkin, M. & Mohammadi-Ivatloo, B. & Hoseinzadeh Lotfi, F. & Noorollahi, Y., 2013. "Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES)," Renewable Energy, Elsevier, vol. 51(C), pages 53-59.
    5. Gomes, I.L.R. & Pousinho, H.M.I. & Melício, R. & Mendes, V.M.F., 2017. "Stochastic coordination of joint wind and photovoltaic systems with energy storage in day-ahead market," Energy, Elsevier, vol. 124(C), pages 310-320.
    6. Pousinho, H.M.I. & Esteves, J. & Mendes, V.M.F. & Collares-Pereira, M. & Pereira Cabrita, C., 2016. "Bilevel approach to wind-CSP day-ahead scheduling with spinning reserve under controllable degree of trust," Renewable Energy, Elsevier, vol. 85(C), pages 917-927.
    7. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, December.
    8. Drury, Easan & Denholm, Paul & Sioshansi, Ramteen, 2011. "The value of compressed air energy storage in energy and reserve markets," Energy, Elsevier, vol. 36(8), pages 4959-4973.
    9. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
    10. Aliasghari, Parinaz & Zamani-Gargari, Milad & Mohammadi-Ivatloo, Behnam, 2018. "Look-ahead risk-constrained scheduling of wind power integrated system with compressed air energy storage (CAES) plant," Energy, Elsevier, vol. 160(C), pages 668-677.
    11. Moradi, Jalal & Shahinzadeh, Hossein & Khandan, Amirsalar & Moazzami, Majid, 2017. "A profitability investigation into the collaborative operation of wind and underwater compressed air energy storage units in the spot market," Energy, Elsevier, vol. 141(C), pages 1779-1794.
    12. Laia, R. & Pousinho, H.M.I. & Melíco, R. & Mendes, V.M.F., 2016. "Bidding strategy of wind-thermal energy producers," Renewable Energy, Elsevier, vol. 99(C), pages 673-681.
    13. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    14. Haisheng Chen & Xinjing Zhang & Jinchao Liu & Chunqing Tan, 2013. "Compressed Air Energy Storage," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    15. Kalavani, Farshad & Mohammadi-Ivatloo, Behnam & Zare, Kazem, 2019. "Optimal stochastic scheduling of cryogenic energy storage with wind power in the presence of a demand response program," Renewable Energy, Elsevier, vol. 130(C), pages 268-280.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhi & Zhou, Ming & Chen, Yanbo & Li, Gengyin, 2023. "Exploiting the operational flexibility of AA-CAES in energy and reserve optimization scheduling by a linear reserve model," Energy, Elsevier, vol. 263(PE).
    2. Liu, J. & Nie, S. & Shan, B.G. & Li, Y.P. & Huang, G.H. & Liu, Z.P., 2019. "Development of an interval-credibility-chance constrained energy-water nexus system planning model—a case study of Xiamen, China," Energy, Elsevier, vol. 181(C), pages 677-693.
    3. Majidi, M. & Mohammadi-Ivatloo, B. & Soroudi, A., 2019. "Application of information gap decision theory in practical energy problems: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 157-165.
    4. Alirahmi, Seyed Mojtaba & Razmi, Amir Reza & Arabkoohsar, Ahmad, 2021. "Comprehensive assessment and multi-objective optimization of a green concept based on a combination of hydrogen and compressed air energy storage (CAES) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    5. Jun Dong & Xihao Dou & Dongran Liu & Aruhan Bao & Dongxue Wang & Yunzhou Zhang, 2023. "Energy Trading Strategy of Distributed Energy Resources Aggregator in Day-Ahead Market Considering Risk Preference Behaviors," Energies, MDPI, vol. 16(4), pages 1-27, February.
    6. Sun, Shitong & Kazemi-Razi, S. Mahdi & Kaigutha, Lisa G. & Marzband, Mousa & Nafisi, Hamed & Al-Sumaiti, Ameena Saad, 2022. "Day-ahead offering strategy in the market for concentrating solar power considering thermoelectric decoupling by a compressed air energy storage," Applied Energy, Elsevier, vol. 305(C).
    7. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    8. Wu, Danman & Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2021. "Optimal bidding and scheduling of AA-CAES based energy hub considering cascaded consumption of heat," Energy, Elsevier, vol. 233(C).
    9. Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2020. "Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation," Energy, Elsevier, vol. 206(C).
    10. Aghamohamadi, Mehrdad & Mahmoudi, Amin, 2019. "From bidding strategy in smart grid toward integrated bidding strategy in smart multi-energy systems, an adaptive robust solution approach," Energy, Elsevier, vol. 183(C), pages 75-91.
    11. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Ochoa, Tomás & Gil, Esteban & Angulo, Alejandro & Valle, Carlos, 2022. "Multi-agent deep reinforcement learning for efficient multi-timescale bidding of a hybrid power plant in day-ahead and real-time markets," Applied Energy, Elsevier, vol. 317(C).
    13. Xiao, Xiangsheng & Wang, Jianxiao & Lin, Rui & Hill, David J. & Kang, Chongqing, 2020. "Large-scale aggregation of prosumers toward strategic bidding in joint energy and regulation markets," Applied Energy, Elsevier, vol. 271(C).
    14. Peng, Feixiang & Hu, Shubo & Fan, Xuanxuan & Sun, Hui & Zhou, Wei & Guo, Furan & Song, Wenzhuo, 2021. "Sequential coalition formation for wind-thermal combined bidding," Energy, Elsevier, vol. 236(C).
    15. Li, Ke & Yang, Fan & Wang, Lupan & Yan, Yi & Wang, Haiyang & Zhang, Chenghui, 2022. "A scenario-based two-stage stochastic optimization approach for multi-energy microgrids," Applied Energy, Elsevier, vol. 322(C).
    16. Sara Haghifam & Kazem Zare & Mehdi Abapour & Gregorio Muñoz-Delgado & Javier Contreras, 2020. "A Stackelberg Game-Based Approach for Transactive Energy Management in Smart Distribution Networks," Energies, MDPI, vol. 13(14), pages 1-34, July.
    17. Mostafa Nasouri Gilvaei & Mahmood Hosseini Imani & Mojtaba Jabbari Ghadi & Li Li & Anahita Golrang, 2021. "Profit-Based Unit Commitment for a GENCO Equipped with Compressed Air Energy Storage and Concentrating Solar Power Units," Energies, MDPI, vol. 14(3), pages 1-20, January.
    18. Khashayar Hamedi & Shahrbanoo Sadeghi & Saeed Esfandi & Mahdi Azimian & Hessam Golmohamadi, 2021. "Eco-Emission Analysis of Multi-Carrier Microgrid Integrated with Compressed Air and Power-to-Gas Energy Storage Technologies," Sustainability, MDPI, vol. 13(9), pages 1-18, April.
    19. Yuan, Jiahang & Luo, Xinggang & Li, Zhendong & Li, Lingfei & Ji, Pengli & Zhou, Qing & Zhang, Zhongliang, 2021. "Sustainable development evaluation on wind power compressed air energy storage projects based on multi-source heterogeneous data," Renewable Energy, Elsevier, vol. 169(C), pages 1175-1189.
    20. Liang Tian & Yunlei Xie & Bo Hu & Xinping Liu & Tuoyu Deng & Huanhuan Luo & Fengqiang Li, 2019. "A Deep Peak Regulation Auxiliary Service Bidding Strategy for CHP Units Based on a Risk-Averse Model and District Heating Network Energy Storage," Energies, MDPI, vol. 12(17), pages 1-27, August.
    21. Yang, Jie & Ma, Tieding & Ma, Kai & Yang, Bo & Guerrero, Josep M. & Liu, Zhixin, 2021. "Trading mechanism and pricing strategy of integrated energy systems based on credit rating and Bayesian game," Energy, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Optimal operation value of combined wind power and energy storage in multi-stage electricity markets," Applied Energy, Elsevier, vol. 235(C), pages 1153-1168.
    3. Jadidbonab, Mohammad & Babaei, Ebrahim & Mohammadi-ivatloo, Behnam, 2019. "CVaR-constrained scheduling strategy for smart multi carrier energy hub considering demand response and compressed air energy storage," Energy, Elsevier, vol. 174(C), pages 1238-1250.
    4. Venkataramani, Gayathri & Parankusam, Prasanna & Ramalingam, Velraj & Wang, Jihong, 2016. "A review on compressed air energy storage – A pathway for smart grid and polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 895-907.
    5. Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2020. "Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation," Energy, Elsevier, vol. 206(C).
    6. Dimitriadis, Christos N. & Tsimopoulos, Evangelos G. & Georgiadis, Michael C., 2022. "Strategic bidding of an energy storage agent in a joint energy and reserve market under stochastic generation," Energy, Elsevier, vol. 242(C).
    7. Mostafa Nasouri Gilvaei & Mahmood Hosseini Imani & Mojtaba Jabbari Ghadi & Li Li & Anahita Golrang, 2021. "Profit-Based Unit Commitment for a GENCO Equipped with Compressed Air Energy Storage and Concentrating Solar Power Units," Energies, MDPI, vol. 14(3), pages 1-20, January.
    8. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    9. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.
    10. Zhang, Yi & Xu, Yujie & Zhou, Xuezhi & Guo, Huan & Zhang, Xinjing & Chen, Haisheng, 2019. "Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation," Applied Energy, Elsevier, vol. 239(C), pages 957-968.
    11. Rouindej, Kamyar & Samadani, Ehsan & Fraser, Roydon A., 2020. "A comprehensive data-driven study of electrical power grid and its implications for the design, performance, and operational requirements of adiabatic compressed air energy storage systems," Applied Energy, Elsevier, vol. 257(C).
    12. DinAli, Magd N. & Dincer, Ibrahim, 2018. "Development and analysis of an integrated gas turbine system with compressed air energy storage for load leveling and energy management," Energy, Elsevier, vol. 163(C), pages 604-617.
    13. Zhang, Zhi & Zhou, Ming & Chen, Yanbo & Li, Gengyin, 2023. "Exploiting the operational flexibility of AA-CAES in energy and reserve optimization scheduling by a linear reserve model," Energy, Elsevier, vol. 263(PE).
    14. Thomas Guewouo & Lingai Luo & Dominique Tarlet & Mohand Tazerout, 2019. "Identification of Optimal Parameters for a Small-Scale Compressed-Air Energy Storage System Using Real Coded Genetic Algorithm," Energies, MDPI, vol. 12(3), pages 1-32, January.
    15. Lak, Omidreza & Rastegar, Mohammad & Mohammadi, Mohammad & Shafiee, Soroush & Zareipour, Hamidreza, 2021. "Risk-constrained stochastic market operation strategies for wind power producers and energy storage systems," Energy, Elsevier, vol. 215(PB).
    16. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.
    17. Mirzaei, Mohammad Amin & Sadeghi-Yazdankhah, Ahmad & Mohammadi-Ivatloo, Behnam & Marzband, Mousa & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Integration of emerging resources in IGDT-based robust scheduling of combined power and natural gas systems considering flexible ramping products," Energy, Elsevier, vol. 189(C).
    18. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Gomes, I.L.R. & Melicio, R. & Mendes, V.M.F. & Pousinho, H.M.I., 2019. "Decision making for sustainable aggregation of clean energy in day-ahead market: Uncertainty and risk," Renewable Energy, Elsevier, vol. 133(C), pages 692-702.
    20. Fazlalipour, Pary & Ehsan, Mehdi & Mohammadi-Ivatloo, Behnam, 2019. "Risk-aware stochastic bidding strategy of renewable micro-grids in day-ahead and real-time markets," Energy, Elsevier, vol. 171(C), pages 689-700.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:171:y:2019:i:c:p:535-546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.