IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v155y2018icp504-520.html
   My bibliography  Save this article

Exergy, exergo-economic, and exergy-pinch analyses (EXPA) of the kalina power-cooling cycle with an ejector

Author

Listed:
  • Rashidi, Jouan
  • Yoo, ChangKyoo

Abstract

This paper intends to optimize a new power and cooling cogeneration system, Kalina power-cooling with an ejector cycle (KPCE). The cycle combines the Kalina power cycle and the ejector absorption refrigeration cycle, with an ammonia-water mixture as the working fluid. To this aim, given the thermodynamic model, the potential improvements to the KPCE components are identified by performing exergy and exergo-economic analyses. Then, the system is optimized through a combination of exergy and pinch analyses (EXPA) to find out the direction of improvement and modifications of the system. This system operates with a thermal efficiency of 12.9% and power-cooling efficiency of 25%, providing 459 kW of power and 439.5 kW of cooling. KPCE showed a total exergy efficiency and exergy destruction of 69.8% and 1076 kW, respectively. Components with the highest exergy destruction and lowest exergy efficiency and unit cost rate are identified. According to EXPA, the system achieved a 5% lower overall cost rate and higher cooling generation, which resulted in higher thermodynamic efficiencies. The modified KPCE showed increases of 32%, 36%, and 32% in thermal, power-cooling, and exergy efficiencies, respectively. Compared with other Kalina power-cooling cycles, the optimized KPCE is introduced as a high-performance power-cooling cogeneration system.

Suggested Citation

  • Rashidi, Jouan & Yoo, ChangKyoo, 2018. "Exergy, exergo-economic, and exergy-pinch analyses (EXPA) of the kalina power-cooling cycle with an ejector," Energy, Elsevier, vol. 155(C), pages 504-520.
  • Handle: RePEc:eee:energy:v:155:y:2018:i:c:p:504-520
    DOI: 10.1016/j.energy.2018.04.178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218308016
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi & Farhang, Behzad, 2017. "Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles," Energy, Elsevier, vol. 139(C), pages 262-276.
    2. Garousi Farshi, L. & Mahmoudi, S.M.S. & Rosen, M.A., 2013. "Exergoeconomic comparison of double effect and combined ejector-double effect absorption refrigeration systems," Applied Energy, Elsevier, vol. 103(C), pages 700-711.
    3. Barkhordarian, Orbel & Behbahaninia, Ali & Bahrampoury, Rasool, 2017. "A novel ammonia-water combined power and refrigeration cycle with two different cooling temperature levels," Energy, Elsevier, vol. 120(C), pages 816-826.
    4. Saffari, Hamid & Sadeghi, Sadegh & Khoshzat, Mohsen & Mehregan, Pooyan, 2016. "Thermodynamic analysis and optimization of a geothermal Kalina cycle system using Artificial Bee Colony algorithm," Renewable Energy, Elsevier, vol. 89(C), pages 154-167.
    5. Li, Xinguo & Zhang, Qilin & Li, Xiajie, 2013. "A Kalina cycle with ejector," Energy, Elsevier, vol. 54(C), pages 212-219.
    6. Wang, Yongqing & Lior, Noam, 2011. "Thermoeconomic analysis of a low-temperature multi-effect thermal desalination system coupled with an absorption heat pump," Energy, Elsevier, vol. 36(6), pages 3878-3887.
    7. Mondal, Subha & De, Sudipta, 2017. "Ejector based organic flash combined power and refrigeration cycle (EBOFCP&RC) – A scheme for low grade waste heat recovery," Energy, Elsevier, vol. 134(C), pages 638-648.
    8. Wang, Jiangfeng & Dai, Yiping & Zhang, Taiyong & Ma, Shaolin, 2009. "Parametric analysis for a new combined power and ejector–absorption refrigeration cycle," Energy, Elsevier, vol. 34(10), pages 1587-1593.
    9. Zhang, Kun & Chen, Xue & Markides, Christos N. & Yang, Yong & Shen, Shengqiang, 2016. "Evaluation of ejector performance for an organic Rankine cycle combined power and cooling system," Applied Energy, Elsevier, vol. 184(C), pages 404-412.
    10. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bourhan Tashtoush & Iscah Songa & Tatiana Morosuk, 2022. "Exergoeconomic Analysis of a Variable Area Solar Ejector Refrigeration System under Hot Climatic Conditions," Energies, MDPI, vol. 15(24), pages 1-19, December.
    2. Chin, Hon Huin & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2023. "Novel circularity and sustainability assessment of symbiosis networks through the Energy Quality Pinch concept," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parikhani, Towhid & Ghaebi, Hadi & Rostamzadeh, Hadi, 2018. "A novel geothermal combined cooling and power cycle based on the absorption power cycle: Energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 153(C), pages 265-277.
    2. Lee, Inkyu & Tester, Jefferson William & You, Fengqi, 2019. "Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 551-577.
    3. Janghorban Esfahani, Iman & Kang, Yong Tae & Yoo, ChangKyoo, 2014. "A high efficient combined multi-effect evaporation–absorption heat pump and vapor-compression refrigeration part 1: Energy and economic modeling and analysis," Energy, Elsevier, vol. 75(C), pages 312-326.
    4. Gholizadeh, Towhid & Vajdi, Mohammad & Rostamzadeh, Hadi, 2020. "A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source," Renewable Energy, Elsevier, vol. 148(C), pages 31-43.
    5. Fidelis. I. Abam & Ogheneruona E. Diemuodeke & Ekwe. B. Ekwe & Mohammed Alghassab & Olusegun D. Samuel & Zafar A. Khan & Muhammad Imran & Muhammad Farooq, 2020. "Exergoeconomic and Environmental Modeling of Integrated Polygeneration Power Plant with Biomass-Based Syngas Supplemental Firing," Energies, MDPI, vol. 13(22), pages 1-27, November.
    6. Jeon, Yongseok & Kim, Sunjae & Kim, Dongwoo & Chung, Hyun Joon & Kim, Yongchan, 2017. "Performance characteristics of an R600a household refrigeration cycle with a modified two-phase ejector for various ejector geometries and operating conditions," Applied Energy, Elsevier, vol. 205(C), pages 1059-1067.
    7. Padilla, Ricardo Vasquez & Too, Yen Chean Soo & Benito, Regano & McNaughton, Robbie & Stein, Wes, 2016. "Thermodynamic feasibility of alternative supercritical CO2 Brayton cycles integrated with an ejector," Applied Energy, Elsevier, vol. 169(C), pages 49-62.
    8. Zhang, Chenghu & Lin, Jiyou & Tan, Yufei, 2019. "A theoretical study on a novel combined organic Rankine cycle and ejector heat pump," Energy, Elsevier, vol. 176(C), pages 81-90.
    9. Varma, G.V. Pradeep & Srinivas, T., 2017. "Power generation from low temperature heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 402-414.
    10. Zhang, Feng & Lei, Fang & Liao, Gaoliang & Jiaqiang, E., 2022. "Performance assessment and optimization on a novel geothermal combined cooling and power system integrating an absorption power cycle with an absorption-compression hybrid refrigeration cycle in paral," Renewable Energy, Elsevier, vol. 201(P1), pages 1061-1075.
    11. sattari sadat, Seyed mohammad & Mirabdolah Lavasani, Arash & Ghaebi, Hadi, 2019. "Economic and thermodynamic evaluation of a new solid oxide fuel cell based polygeneration system," Energy, Elsevier, vol. 175(C), pages 515-533.
    12. Mondal, Subha & De, Sudipta, 2017. "Ejector based organic flash combined power and refrigeration cycle (EBOFCP&RC) – A scheme for low grade waste heat recovery," Energy, Elsevier, vol. 134(C), pages 638-648.
    13. Mondal, Subha & Alam, Shahbaz & De, Sudipta, 2018. "Performance assessment of a low grade waste heat driven organic flash cycle (OFC) with ejector," Energy, Elsevier, vol. 163(C), pages 849-862.
    14. Prakash, M. & Sarkar, A. & Sarkar, J. & Chakraborty, J.P. & Mondal, S.S. & Sahoo, R.R., 2019. "Performance assessment of novel biomass gasification based CCHP systems integrated with syngas production," Energy, Elsevier, vol. 167(C), pages 379-390.
    15. Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.
    16. Hamza K. Mukhtar & Saud Ghani, 2021. "Hybrid Ejector-Absorption Refrigeration Systems: A Review," Energies, MDPI, vol. 14(20), pages 1-31, October.
    17. Geng, Donghan & Gao, Xiangjie, 2023. "Thermodynamic and exergoeconomic optimization of a novel cooling, desalination and power multigeneration system based on ocean thermal energy," Renewable Energy, Elsevier, vol. 202(C), pages 17-39.
    18. Janghorban Esfahani, Iman & Yoo, Changkyoo, 2014. "A highly efficient combined multi-effect evaporation-absorption heat pump and vapor-compression refrigeration part 2: Thermoeconomic and flexibility analysis," Energy, Elsevier, vol. 75(C), pages 327-337.
    19. Du, Yang & Dai, Yiping, 2018. "Off-design performance analysis of a power-cooling cogeneration system combining a Kalina cycle with an ejector refrigeration cycle," Energy, Elsevier, vol. 161(C), pages 233-250.
    20. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:155:y:2018:i:c:p:504-520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.