IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v153y2018icp530-538.html
   My bibliography  Save this article

Compositional modification of products from Co-Pyrolysis of chicken manure and biomass by shifting carbon distribution from pyrolytic oil to syngas using CO2

Author

Listed:
  • Choi, Dongho
  • Oh, Jeong-Ik
  • Baek, Kitae
  • Lee, Jechan
  • Kwon, Eilhann E.

Abstract

Co-pyrolysis of chicken manure and biomass was investigated in this study. The pyrolysis of individual samples was characterized by thermogravimetric analysis (TGA) under N2 and CO2 atmospheres. This demonstrated that the impact of CO2 content on the physical aspects of pyrolysis such as onset and end temperatures, and residual mass was negligible. However, a high CaCO3 content (17 wt%) in chicken manure catalyzed the Boudouard reaction. Despite its negligible physical influence, CO2 evidently affected the co-pyrolysis of chicken manure and biomass chemically. It expedited the thermal cracking of hydrocarbons from the co-pyrolysis of chicken manure and biomass. Moreover, between 550 and 660 °C, CO2 reacted with condensable hydrocarbons, effectively improving CO generation. This observation suggested that CO2 acted as both carbon scavenger and oxygen donor in the co-pyrolysis of chicken manure and biomass, a driving force for shifting carbon distribution between pyrogenic products. For example, pyrolytic oil was transformed into syngas, especially CO, offering an innovative means to modify compositions of pyrolytic products. These effects were not observed in the presence of CaCO3 and/or CaO.

Suggested Citation

  • Choi, Dongho & Oh, Jeong-Ik & Baek, Kitae & Lee, Jechan & Kwon, Eilhann E., 2018. "Compositional modification of products from Co-Pyrolysis of chicken manure and biomass by shifting carbon distribution from pyrolytic oil to syngas using CO2," Energy, Elsevier, vol. 153(C), pages 530-538.
  • Handle: RePEc:eee:energy:v:153:y:2018:i:c:p:530-538
    DOI: 10.1016/j.energy.2018.04.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218306923
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Galik, Christopher S. & Abt, Robert C. & Latta, Gregory & Méley, Andréanne & Henderson, Jesse D., 2016. "Meeting renewable energy and land use objectives through public–private biomass supply partnerships," Applied Energy, Elsevier, vol. 172(C), pages 264-274.
    2. Chen, Xuejing & Jiang, Jianguo & Li, Kaimin & Tian, Sicong & Yan, Feng, 2017. "Energy-efficient biogas reforming process to produce syngas: The enhanced methane conversion by O2," Applied Energy, Elsevier, vol. 185(P1), pages 687-697.
    3. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    4. C. Tattersall Smith & Brenna Lattimore & Göran Berndes & Niclas Scott Bentsen & Ioannis Dimitriou & J.W.A. (Hans) Langeveld & Evelyne Thiffault, 2017. "Opportunities to encourage mobilization of sustainable bioenergy supply chains," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(3), May.
    5. Alaswad, A. & Dassisti, M. & Prescott, T. & Olabi, A.G., 2015. "Technologies and developments of third generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1446-1460.
    6. Thanapal, Siva Sankar & Annamalai, Kalyan & Sweeten, John M. & Gordillo, Gerardo, 2012. "Fixed bed gasification of dairy biomass with enriched air mixture," Applied Energy, Elsevier, vol. 97(C), pages 525-531.
    7. Pantaleo, Antonio M. & Camporeale, Sergio M. & Miliozzi, Adio & Russo, Valeria & Shah, Nilay & Markides, Christos N., 2017. "Novel hybrid CSP-biomass CHP for flexible generation: Thermo-economic analysis and profitability assessment," Applied Energy, Elsevier, vol. 204(C), pages 994-1006.
    8. Alemán-Nava, Gibrán S. & Casiano-Flores, Victor H. & Cárdenas-Chávez, Diana L. & Díaz-Chavez, Rocío & Scarlat, Nicolae & Mahlknecht, Jürgen & Dallemand, Jean-Francois & Parra, Roberto, 2014. "Renewable energy research progress in Mexico: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 140-153.
    9. Amaro, Helena M. & Guedes, A. Catarina & Malcata, F. Xavier, 2011. "Advances and perspectives in using microalgae to produce biodiesel," Applied Energy, Elsevier, vol. 88(10), pages 3402-3410.
    10. Rezaei, Hamid & Sokhansanj, Shahab & Bi, Xiaotao & Lim, C. Jim & Lau, Anthony, 2017. "A numerical and experimental study on fast pyrolysis of single woody biomass particles," Applied Energy, Elsevier, vol. 198(C), pages 320-331.
    11. Bergthorson, J.M. & Goroshin, S. & Soo, M.J. & Julien, P. & Palecka, J. & Frost, D.L. & Jarvis, D.J., 2015. "Direct combustion of recyclable metal fuels for zero-carbon heat and power," Applied Energy, Elsevier, vol. 160(C), pages 368-382.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Jung-Hun & Oh, Jeong-Ik & Lee, Jechan & Kwon, Eilhann E., 2019. "Valorization of sewage sludge via a pyrolytic platform using carbon dioxide as a reactive gas medium," Energy, Elsevier, vol. 179(C), pages 163-172.
    2. Jung, Jong-Min & Kim, Sok & Lee, Jechan & Oh, Jeong Ik & Choi, Yoon-E. & Kwon, Eilhann E., 2019. "Tailoring pyrogenic products from pyrolysis of defatted Euglena gracilis using CO2 as reactive gas medium," Energy, Elsevier, vol. 174(C), pages 184-190.
    3. Navarro, M.V. & López, J.M. & Veses, A. & Callén, M.S. & García, T., 2018. "Kinetic study for the co-pyrolysis of lignocellulosic biomass and plastics using the distributed activation energy model," Energy, Elsevier, vol. 165(PA), pages 731-742.
    4. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Onumaegbu, C. & Mooney, J. & Alaswad, A. & Olabi, A.G., 2018. "Pre-treatment methods for production of biofuel from microalgae biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 16-26.
    2. Joshi, Girdhar & Pandey, Jitendra K. & Rana, Sravendra & Rawat, Devendra S., 2017. "Challenges and opportunities for the application of biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 850-866.
    3. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    4. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    5. Ke Zhang & Xingwei Wang, 2021. "Pollution Haven Hypothesis of Global CO 2 , SO 2 , NO x —Evidence from 43 Economies and 56 Sectors," IJERPH, MDPI, vol. 18(12), pages 1-27, June.
    6. Janicka, J. & Debiagi, P. & Scholtissek, A. & Dreizler, A. & Epple, B. & Pawellek, R. & Maltsev, A. & Hasse, C., 2023. "The potential of retrofitting existing coal power plants: A case study for operation with green iron," Applied Energy, Elsevier, vol. 339(C).
    7. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    8. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    9. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.
    10. He, Xijun & Dong, Yanbo & Wu, Yuying & Wei, Guodan & Xing, Lizhi & Yan, Jia, 2017. "Structure analysis and core community detection of embodied resources networks among regional industries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 137-150.
    11. Ribeiro, Lauro André & Silva, Patrícia Pereira da, 2013. "Surveying techno-economic indicators of microalgae biofuel technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 89-96.
    12. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    13. Cai, Xiaomei & Liu, Chan & Zheng, Shuxian & Hu, Han & Tan, Zhanglu, 2023. "Analysis on the evolution characteristics of barite international trade pattern based on complex networks," Resources Policy, Elsevier, vol. 83(C).
    14. Ebers Broughel, Anna, 2019. "On the ground in sunny Mexico: A case study of consumer perceptions and willingness to pay for solar-powered devices," World Development Perspectives, Elsevier, vol. 15(C), pages 1-1.
    15. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    16. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    17. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    18. Jiang, Meihui & An, Haizhong & Guan, Qing & Sun, Xiaoqi, 2018. "Global embodied mineral flow between industrial sectors: A network perspective," Resources Policy, Elsevier, vol. 58(C), pages 192-201.
    19. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    20. Nadimi, Reza & Tokimatsu, Koji, 2019. "Potential energy saving via overall efficiency relying on quality of life," Applied Energy, Elsevier, vol. 233, pages 283-299.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:153:y:2018:i:c:p:530-538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.