IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v151y2018icp501-519.html
   My bibliography  Save this article

Assessment of primary air on corn straw in a fixed bed combustion using Eulerian-Eulerian approach

Author

Listed:
  • Meng, Xiaoxiao
  • Sun, Rui
  • Ismail, Tamer M.
  • El-Salam, M. Abd
  • Zhou, Wei
  • Zhang, Ruihan
  • Ren, Xiaohan

Abstract

In this paper, mathematical modelling is conducted on the combustion of corn straw in a one-dimensional bench combustion test rig, and the effects of the primary air flow rate are assessed over a wide range. Due to complex solid combustion mechanisms and inadequate knowledge of the process, the development of such combustion system is limited. Numerical modelling of this combustion system has some advantages over experimental analysis, although the development of a complete model for this type of combustion system remains a challenge. Due to its characteristic properties, modelling of biomass combustion has to overcome many difficulties. One such problem is displaying the process of initiating the combustion in numerical modelling. This study finds that the volatile release and combustion of char increases, thus increasing the amount of primary air up to a critical point, where the starting time of ignition becomes shorter as the primary air flow rate increases. The peak concentration of NO decreases with the increase of primary air, whereas with the increase in the amount of air, there is a reduction in the release of SO2 as well as a reduction in CO emissions in the bed.

Suggested Citation

  • Meng, Xiaoxiao & Sun, Rui & Ismail, Tamer M. & El-Salam, M. Abd & Zhou, Wei & Zhang, Ruihan & Ren, Xiaohan, 2018. "Assessment of primary air on corn straw in a fixed bed combustion using Eulerian-Eulerian approach," Energy, Elsevier, vol. 151(C), pages 501-519.
  • Handle: RePEc:eee:energy:v:151:y:2018:i:c:p:501-519
    DOI: 10.1016/j.energy.2018.03.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218304900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Borello, Domenico & Venturini, Paolo & Rispoli, Franco & Rafael, Saavedra G.Z., 2013. "Prediction of multiphase combustion and ash deposition within a biomass furnace," Applied Energy, Elsevier, vol. 101(C), pages 413-422.
    2. Ström, Henrik & Thunman, Henrik, 2013. "A computationally efficient particle submodel for CFD-simulations of fixed-bed conversion," Applied Energy, Elsevier, vol. 112(C), pages 808-817.
    3. de Souza-Santos, Marcio L., 2017. "Proposals for power generation based on processes consuming biomass-glycerol slurries," Energy, Elsevier, vol. 120(C), pages 959-974.
    4. Yuan, Shuai & Zhou, Zhi-jie & Li, Jun & Wang, Fu-chen, 2012. "Nitrogen conversion during rapid pyrolysis of coal and petroleum coke in a high-frequency furnace," Applied Energy, Elsevier, vol. 92(C), pages 854-859.
    5. Zhao, Bingtao & Su, Yaxin & Liu, Dunyu & Zhang, Hang & Liu, Wang & Cui, Guomin, 2016. "SO2/NOx emissions and ash formation from algae biomass combustion: Process characteristics and mechanisms," Energy, Elsevier, vol. 113(C), pages 821-830.
    6. Eric, Aleksandar & Dakic, Dragoljub & Nemoda, Stevan & Komatina, Mirko & Repic, Branislav, 2012. "Experimental determination thermo physical characteristics of balled biomass," Energy, Elsevier, vol. 45(1), pages 350-357.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Xiaoxiao & Zhou, Wei & Yan, Yonghong & Ren, Xiaohan & Ismail, Tamer M. & Sun, Rui, 2020. "Effects of preheating primary air and fuel size on the combustion characteristics of blended pinewood and corn straw in a fixed bed," Energy, Elsevier, vol. 210(C).
    2. Zhou, Anqi & Xu, Hongpeng & Xu, Mingchen & Yu, Wenbin & Li, Zhenwei & Yang, Wenming, 2020. "Numerical investigation of biomass co-combustion with methane for NOx reduction," Energy, Elsevier, vol. 194(C).
    3. Meng, Xiaoxiao & Sun, Rui & Ismail, Tamer M. & Zhou, Wei & Ren, Xiaohan & Zhang, Ruihan, 2018. "Parametric studies on corn straw combustion characteristics in a fixed bed: Ash and moisture content," Energy, Elsevier, vol. 158(C), pages 192-203.
    4. Xia, Zihong & Long, Jisheng & Yan, Shuai & Bai, Li & Du, Hailiang & Chen, Caixia, 2021. "Two-fluid simulation of moving grate waste incinerator: Comparison of 2D and 3D bed models," Energy, Elsevier, vol. 216(C).
    5. Turkyilmazoglu, Mustafa, 2020. "Combustion of a solid fuel material at motion," Energy, Elsevier, vol. 203(C).
    6. Jiao, Long & Kuang, Min & Chen, Yangyang & Liu, Sheng & Wang, Xiu, 2021. "Detailed measurements of in-furnace gas temperature and species concentration distribution regarding the primary-air distribution mode in a spreader and reversal chain-grate furnace," Energy, Elsevier, vol. 235(C).
    7. Costa, Michela & Curcio, Christian & Piazzullo, Daniele & Rocco, Vittorio & Tuccillo, Raffaele, 2018. "RDF incineration modelling trough thermo-chemical conversion and gaseous combustion coupling," Energy, Elsevier, vol. 161(C), pages 974-987.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Xiaoxiao & Sun, Rui & Ismail, Tamer M. & Zhou, Wei & Ren, Xiaohan & Zhang, Ruihan, 2018. "Parametric studies on corn straw combustion characteristics in a fixed bed: Ash and moisture content," Energy, Elsevier, vol. 158(C), pages 192-203.
    2. Meng, Xiaoxiao & Zhou, Wei & Yan, Yonghong & Ren, Xiaohan & Ismail, Tamer M. & Sun, Rui, 2020. "Effects of preheating primary air and fuel size on the combustion characteristics of blended pinewood and corn straw in a fixed bed," Energy, Elsevier, vol. 210(C).
    3. Mikulčić, Hrvoje & von Berg, Eberhard & Vujanović, Milan & Wang, Xuebin & Tan, Houzhang & Duić, Neven, 2016. "Numerical evaluation of different pulverized coal and solid recovered fuel co-firing modes inside a large-scale cement calciner," Applied Energy, Elsevier, vol. 184(C), pages 1292-1305.
    4. Wang, Linzheng & Zhang, Ruizhi & Deng, Ruiqu & Liu, Zeqing & Luo, Yonghao, 2023. "Comprehensive parametric study of fixed-bed co-gasification process through Multiple Thermally Thick Particle (MTTP) model," Applied Energy, Elsevier, vol. 348(C).
    5. Cadavez, Carina Crisp & de Souza-Santos, Marcio L., 2021. "Efficiency of a power generation alternative regarding the composition of feeding biomass-glycerol slurry; theoretical assessment," Energy, Elsevier, vol. 214(C).
    6. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Nikolaos Margaritis & Christos Evaggelou & Panagiotis Grammelis & Roberto Arévalo & Haris Yiannoulakis & Polykarpos Papageorgiou, 2023. "Application of Flexible Tools in Magnesia Sector: The Case of Grecian Magnesite," Sustainability, MDPI, vol. 15(16), pages 1-30, August.
    8. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.
    9. Luo, Lei & Zhang, Hai & Jiao, Anyao & Jiang, Yuanzhen & Liu, Jiaxun & Jiang, Xiumin & Tian, Feng, 2019. "Study on the formation and dissipation mechanism of gas phase products during rapid pyrolysis of superfine pulverized coal in entrained flow reactor," Energy, Elsevier, vol. 173(C), pages 985-994.
    10. Wang, Liang & Skreiberg, Øyvind & Becidan, Michael & Li, Hailong, 2016. "Investigation of rye straw ash sintering characteristics and the effect of additives," Applied Energy, Elsevier, vol. 162(C), pages 1195-1204.
    11. Jaroslaw Krzywanski, 2019. "A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods," Energies, MDPI, vol. 12(23), pages 1-32, November.
    12. Francesco Miccio & Federica Raganati & Paola Ammendola & Farouk Okasha & Michele Miccio, 2021. "Fluidized Bed Combustion and Gasification of Fossil and Renewable Slurry Fuels," Energies, MDPI, vol. 14(22), pages 1-16, November.
    13. Huan Li & Huawei Mou & Nan Zhao & Yaohong Yu & Quan Hong & Mperejekumana Philbert & Yuguang Zhou & Hossein Beidaghy Dizaji & Renjie Dong, 2021. "Nitrogen Migration during Pyrolysis of Raw and Acid Leached Maize Straw," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
    14. Yaxin Ge & Guangyi Zhang & Jianling Zhang & Wennan Zhang & Lijie Cui, 2022. "Emission Characteristics of NO x and SO 2 during the Combustion of Antibiotic Mycelial Residue," IJERPH, MDPI, vol. 19(3), pages 1-14, January.
    15. Phiri, Zebron & Everson, Raymond C. & Neomagus, Hein W.J.P. & Wood, Barry J., 2018. "Transformation of nitrogen functional forms and the accompanying chemical-structural properties emanating from pyrolysis of bituminous coals," Applied Energy, Elsevier, vol. 216(C), pages 414-427.
    16. Choi, Byungchul & Kim, Cheolho & Yang, Seongsu & Lee, Sejin & Kim, Moonyong & Byun, Sungchun & Jung, Gyeong-gap, 2020. "Effective components on explosive combustion characteristics of wood charcoals," Energy, Elsevier, vol. 197(C).
    17. Aaron E. Brown & Jessica M. M. Adams & Oliver R. Grasham & Miller Alonso Camargo-Valero & Andrew B. Ross, 2020. "An Assessment of Different Integration Strategies of Hydrothermal Carbonisation and Anaerobic Digestion of Water Hyacinth," Energies, MDPI, vol. 13(22), pages 1-26, November.
    18. Haili Liu & Xu Zhang & Qingchao Hong, 2021. "Emission Characteristics of Pollution Gases from the Combustion of Food Waste," Energies, MDPI, vol. 14(19), pages 1-11, October.
    19. Zhao, Zhenghui & Wang, Ruikun & Wu, Junhong & Yin, Qianqian & Wang, Chunbo, 2019. "Bottom ash characteristics and pollutant emission during the co-combustion of pulverized coal with high mass-percentage sewage sludge," Energy, Elsevier, vol. 171(C), pages 809-818.
    20. Cai, Yongtie & Tay, Kunlin & Zheng, Zhimin & Yang, Wenming & Wang, Hui & Zeng, Guang & Li, Zhiwang & Keng Boon, Siah & Subbaiah, Prabakaran, 2018. "Modeling of ash formation and deposition processes in coal and biomass fired boilers: A comprehensive review," Applied Energy, Elsevier, vol. 230(C), pages 1447-1544.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:151:y:2018:i:c:p:501-519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.