IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v142y2018icp991-1009.html
   My bibliography  Save this article

Modeling of downdraft gasification process: Studies on particle geometries in thermally thick regime

Author

Listed:
  • Chaurasia, Ashish

Abstract

In this study, a downdraft gasifier model is coupled with a single-particle model to analyze the effects of particle geometries such as slab, cylindrical, and spherical on different parameters. Simulations were performed using particles in a thermally thick regime with larger particle sizes of 0.003–0.05 m, which are generally used in commercial gasifiers. This combination of the downdraft gasifier model and single particle model was implemented using Comsol Multiphysics software program. The results obtained are in good agreement with those of obtained in previous studies. The low thermal conductivity of biomass (kB), small particle size (dp), high gas temperature (Tg), higher molar fraction of oxygen in primary air (XO2), and high mass-transfer coefficient (km) favor the formation of carbon monoxide (CO), hydrogen (H2), high tar conversion, and higher lower heating value. To maximize the CO composition and tar conversion, the initial gas temperature (Tg) is more crucial. The least sensitive parameter is the thermal conductivity of biomass (kB) in relation to product composition of CO, carbon dioxide (CO2), H2, and methane (CH4). The sensitivity for all the parameters is found to be the highest for the spherical geometry and is least for the slab geometry.

Suggested Citation

  • Chaurasia, Ashish, 2018. "Modeling of downdraft gasification process: Studies on particle geometries in thermally thick regime," Energy, Elsevier, vol. 142(C), pages 991-1009.
  • Handle: RePEc:eee:energy:v:142:y:2018:i:c:p:991-1009
    DOI: 10.1016/j.energy.2017.10.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421731798X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.10.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaurasia, Ashish, 2016. "Modeling, simulation and optimization of downdraft gasifier: Studies on chemical kinetics and operating conditions on the performance of the biomass gasification process," Energy, Elsevier, vol. 116(P1), pages 1065-1076.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gautam, Neha & Chaurasia, Ashish, 2020. "Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse and neem bark in a fixed-bed pyrolysis process," Energy, Elsevier, vol. 190(C).
    2. Chaurasia, Ashish, 2019. "Modeling of downdraft gasification process: Part I - Studies on shrinkage effect on tabular, cylindrical and spherical geometries," Energy, Elsevier, vol. 169(C), pages 130-141.
    3. Chaurasia, Ashish, 2020. "Modeling of downdraft gasification process: Part II - Studies on the effect of shrinking and non-shrinking biomass geometries on the performance of gasification process," Energy, Elsevier, vol. 207(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martínez, Laura V. & Rubiano, Jairo E. & Figueredo, Manuel & Gómez, María F., 2020. "Experimental study on the performance of gasification of corncobs in a downdraft fixed bed gasifier at various conditions," Renewable Energy, Elsevier, vol. 148(C), pages 1216-1226.
    2. Yepes Maya, Diego Mauricio & Silva Lora, Electo Eduardo & Andrade, Rubenildo Vieira & Ratner, Albert & Martínez Angel, Juan Daniel, 2021. "Biomass gasification using mixtures of air, saturated steam, and oxygen in a two-stage downdraft gasifier. Assessment using a CFD modeling approach," Renewable Energy, Elsevier, vol. 177(C), pages 1014-1030.
    3. Alejandro Lyons Cerón & Alar Konist & Heidi Lees & Oliver Järvik, 2021. "Effect of Woody Biomass Gasification Process Conditions on the Composition of the Producer Gas," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    4. Smith Lewin, Caroline & Fonseca de Aguiar Martins, Ana Rosa & Pradelle, Florian, 2020. "Modelling, simulation and optimization of a solid residues downdraft gasifier: Application to the co-gasification of municipal solid waste and sugarcane bagasse," Energy, Elsevier, vol. 210(C).
    5. Gautam, Neha & Chaurasia, Ashish, 2020. "Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse and neem bark in a fixed-bed pyrolysis process," Energy, Elsevier, vol. 190(C).
    6. Qian, Hongliang & Chen, Wei & Zhu, Weiwei & Liu, Chang & Lu, Xiaohua & Guo, Xiaojing & Huang, Dechun & Liang, Xiaodong & Kontogeorgis, Georgios M., 2019. "Simulation and evaluation of utilization pathways of biomasses based on thermodynamic data prediction," Energy, Elsevier, vol. 173(C), pages 610-625.
    7. Yuan, Peng & Shen, Boxiong & Duan, Dongping & Adwek, George & Mei, Xue & Lu, Fengju, 2017. "Study on the formation of direct reduced iron by using biomass as reductants of carbon containing pellets in RHF process," Energy, Elsevier, vol. 141(C), pages 472-482.
    8. Taheri, M.H. & Mosaffa, A.H. & Farshi, L. Garousi, 2017. "Energy, exergy and economic assessments of a novel integrated biomass based multigeneration energy system with hydrogen production and LNG regasification cycle," Energy, Elsevier, vol. 125(C), pages 162-177.
    9. Chaurasia, Ashish, 2019. "Modeling of downdraft gasification process: Part I - Studies on shrinkage effect on tabular, cylindrical and spherical geometries," Energy, Elsevier, vol. 169(C), pages 130-141.
    10. Safarian, Sahar & Unnþórsson, Rúnar & Richter, Christiaan, 2019. "A review of biomass gasification modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 378-391.
    11. Stanislaw Szwaja & Anna Poskart & Monika Zajemska & Magdalena Szwaja, 2019. "Theoretical and Experimental Analysis on Co-Gasification of Sewage Sludge with Energetic Crops," Energies, MDPI, vol. 12(9), pages 1-15, May.
    12. Chaurasia, Ashish, 2020. "Modeling of downdraft gasification process: Part II - Studies on the effect of shrinking and non-shrinking biomass geometries on the performance of gasification process," Energy, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:142:y:2018:i:c:p:991-1009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.