IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v139y2017icp170-183.html
   My bibliography  Save this article

Methodology to parametric design of cam profile for electronic unit pump

Author

Listed:
  • Zhang, Zheng
  • Liu, Fushui
  • Wang, Pei
  • Hu, Ruo
  • Sun, Baigang

Abstract

As to the fuel injection system of electronic unit pump, of which fuel supply principles mainly be influenced by fuel supply camshaft. Due to the requirements of the diesel engine for the fuel supply system, a new method is presented to design the constant pressure injection fuel supply cam profile. First, design principles of the fuel supply camshaft profile according to the diesel engine combustion requirement are proposed and then the parametric equation for the camshaft profile can be obtained by the proposed principles which are analyzed through math method. At last, after the prediction and comparison of the designed camshaft profile, the conclusion shows that the fuel injection system designed by the proposed principle can satisfy the injection requirements of the diesel engine. Meanwhile, the parametric equations simplify the design process of camshaft profile so as to improve the reliability and the injection performance of the fuel supply system.

Suggested Citation

  • Zhang, Zheng & Liu, Fushui & Wang, Pei & Hu, Ruo & Sun, Baigang, 2017. "Methodology to parametric design of cam profile for electronic unit pump," Energy, Elsevier, vol. 139(C), pages 170-183.
  • Handle: RePEc:eee:energy:v:139:y:2017:i:c:p:170-183
    DOI: 10.1016/j.energy.2017.07.142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217313269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.07.142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soid, S.N. & Zainal, Z.A., 2011. "Spray and combustion characterization for internal combustion engines using optical measuring techniques – A review," Energy, Elsevier, vol. 36(2), pages 724-741.
    2. Magno, Agnese & Mancaruso, Ezio & Vaglieco, Bianca Maria, 2014. "Experimental investigation in an optically accessible diesel engine of a fouled piezoelectric injector," Energy, Elsevier, vol. 64(C), pages 842-852.
    3. Agarwal, Avinash Kumar & Dhar, Atul & Gupta, Jai Gopal & Kim, Woong Il & Lee, Chang Sik & Park, Sungwook, 2014. "Effect of fuel injection pressure and injection timing on spray characteristics and particulate size–number distribution in a biodiesel fuelled common rail direct injection diesel engine," Applied Energy, Elsevier, vol. 130(C), pages 212-221.
    4. Qiu, Tao & Dai, Hefei & Lei, Yan & Cao, Chunlei & Li, Xuchu, 2015. "Optimising the cam profile of an electronic unit pump for a heavy-duty diesel engine," Energy, Elsevier, vol. 83(C), pages 276-283.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Tao & Dai, Hefei & Lei, Yan & Cao, Chunlei & Li, Xuchu, 2015. "Optimising the cam profile of an electronic unit pump for a heavy-duty diesel engine," Energy, Elsevier, vol. 83(C), pages 276-283.
    2. Muteeb Ul Haq & Ali Turab Jafry & Saad Ahmad & Taqi Ahmad Cheema & Munib Qasim Ansari & Naseem Abbas, 2022. "Recent Advances in Fuel Additives and Their Spray Characteristics for Diesel-Based Blends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    3. Pastor, J.V. & Bermúdez, V. & García-Oliver, J.M. & Ramírez-Hernández, J.G., 2011. "Influence of spray-glow plug configuration on cold start combustion for high-speed direct injection diesel engines," Energy, Elsevier, vol. 36(9), pages 5486-5496.
    4. Fabián Vargas & Armando Pérez & Rene Delgado & Emilio Hernández & José Alejandro Suástegui, 2019. "Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    5. Mohankumar, S. & Senthilkumar, P., 2017. "Particulate matter formation and its control methodologies for diesel engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1227-1238.
    6. V. G. Kamaltdinov & V. A. Markov & I. O. Lysov & A. A. Zherdev & V. V. Furman, 2019. "Experimental Studies of Fuel Injection in a Diesel Engine with an Inclined Injector," Energies, MDPI, vol. 12(14), pages 1-18, July.
    7. Huang, Weidi & Wu, Zhijun & Gao, Ya & Zhang, Lin, 2015. "Effect of shock waves on the evolution of high-pressure fuel jets," Applied Energy, Elsevier, vol. 159(C), pages 442-448.
    8. Qiu, Tao & Wang, Kaixin & Lei, Yan & Wu, Chenglin & Liu, Yuwei & Chen, Xinyu & Guo, Peng, 2018. "Investigation on effects of back pressure on submerged jet flow from short cylindrical orifice filled with diesel fuel," Energy, Elsevier, vol. 162(C), pages 964-976.
    9. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Chen, Wei & Bani, Stephen, 2017. "The influence of injection strategy on mixture formation and combustion process in a direct injection natural gas rotary engine," Applied Energy, Elsevier, vol. 187(C), pages 663-674.
    10. Asgari, Behrad & Amani, Ehsan, 2017. "A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors," Applied Energy, Elsevier, vol. 203(C), pages 696-710.
    11. Park, Cheolwoong & Kim, Sungdae & Kim, Hongsuk & Moriyoshi, Yasuo, 2012. "Stratified lean combustion characteristics of a spray-guided combustion system in a gasoline direct injection engine," Energy, Elsevier, vol. 41(1), pages 401-407.
    12. Xiangting Wang & Haiqiao Wei & Jiaying Pan & Zhen Hu & Zeyuan Zheng & Mingzhang Pan, 2020. "Analysis of Diesel Knock for High-Altitude Heavy-Duty Engines Using Optical Rapid Compression Machines," Energies, MDPI, vol. 13(12), pages 1-14, June.
    13. Hwang, Joonsik & Bae, Choongsik & Patel, Chetankumar & Agarwal, Rashmi A. & Gupta, Tarun & Kumar Agarwal, Avinash, 2017. "Investigations on air-fuel mixing and flame characteristics of biodiesel fuels for diesel engine application," Applied Energy, Elsevier, vol. 206(C), pages 1203-1213.
    14. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    15. Zhongchang Liu & Xing Yuan & Jing Tian & Yongqiang Han & Runzhao Li & Guanlong Gao, 2018. "Investigation of Sectional-Stage Loading Strategies on a Two-Stage Turbocharged Heavy-Duty Diesel Engine under Transient Operation with EGR," Energies, MDPI, vol. 11(1), pages 1-19, January.
    16. Hongzhan Xie & Lanbo Song & Yizhi Xie & Dong Pi & Chunyu Shao & Qizhao Lin, 2015. "An Experimental Study on the Macroscopic Spray Characteristics of Biodiesel and Diesel in a Constant Volume Chamber," Energies, MDPI, vol. 8(6), pages 1-21, June.
    17. Shahir, V.K. & Jawahar, C.P. & Suresh, P.R., 2015. "Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 686-697.
    18. Ding, Hong-ming & Zhuo, Chang-fei & Deng, Han-yu & Li, Mao-quan & Chen, Xiong & Sun, Bo, 2023. "Experimental and numerical study on the development process and flow characteristics of powder fuel jet in the powder fuel scramjet," Energy, Elsevier, vol. 262(PA).
    19. Babu, D. & Thangarasu, Vinoth & Ramanathan, Anand, 2020. "Artificial neural network approach on forecasting diesel engine characteristics fuelled with waste frying oil biodiesel," Applied Energy, Elsevier, vol. 263(C).
    20. Zhang, Zhifei & Li, Tie & Shi, Weiquan, 2019. "Ambient Tracer-LIF for 2-D quantitative measurement of fuel concentration in gas jets," Energy, Elsevier, vol. 171(C), pages 372-384.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:139:y:2017:i:c:p:170-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.