IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v123y2017icp1-8.html
   My bibliography  Save this article

Conversion of glycerol into syngas by rotating DC arc plasma

Author

Listed:
  • Zhang, Ming
  • Xue, Wenfeng
  • Su, Baogen
  • Bao, Zongbi
  • Wen, Guangdong
  • Xing, Huabin
  • Ren, Qilong

Abstract

One of the most stable byproducts of biodiesel industry is glycerol, for which there’s lack of a large-scale application currently. Thermal plasma treatment is a potentially viable means of recycling glycerol by converting it into syngas. In this work, a rotating DC arc plasma reactor was used to decompose glycerol in order to produce syngas. The effect of plasma input power, glycerol feed rate, and water content in feedstock on the syngas conversion was investigated. It was found that the product gas stream, on an argon-free basis, contained 38% CO and 56% H2, with the balance being methane, ethylene, and little C4 hydrocarbons. Complete carbon conversion and energy conversion efficiency of 66% could be obtained with sufficient input power. Water content of feedstock influenced the amount of CO and H2 in the product gas. Magnetic flux intensity of the reactor showed negligible effect on the composition of the product gas, carbon conversion and energy conversion efficiency, but could prevent the anode and plasma reactor from severe erosion.

Suggested Citation

  • Zhang, Ming & Xue, Wenfeng & Su, Baogen & Bao, Zongbi & Wen, Guangdong & Xing, Huabin & Ren, Qilong, 2017. "Conversion of glycerol into syngas by rotating DC arc plasma," Energy, Elsevier, vol. 123(C), pages 1-8.
  • Handle: RePEc:eee:energy:v:123:y:2017:i:c:p:1-8
    DOI: 10.1016/j.energy.2017.01.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217301354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mangayil, Rahul & Aho, Tommi & Karp, Matti & Santala, Ville, 2015. "Improved bioconversion of crude glycerol to hydrogen by statistical optimization of media components," Renewable Energy, Elsevier, vol. 75(C), pages 583-589.
    2. Motasemi, F. & Ani, F.N., 2012. "A review on microwave-assisted production of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4719-4733.
    3. Ardi, M.S. & Aroua, M.K. & Hashim, N. Awanis, 2015. "Progress, prospect and challenges in glycerol purification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1164-1173.
    4. R. D. Cortright & R. R. Davda & J. A. Dumesic, 2002. "Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water," Nature, Nature, vol. 418(6901), pages 964-967, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Zuliang & Zhou, Weili & Hao, Xiaodong & Zhang, Xuming, 2019. "Plasma reforming of n-pentane as a simulated gasoline to hydrogen and cleaner carbon-based fuels," Energy, Elsevier, vol. 189(C).
    2. Chen, Wei-Hsin & Chen, Chia-Yang, 2020. "Water gas shift reaction for hydrogen production and carbon dioxide capture: A review," Applied Energy, Elsevier, vol. 258(C).
    3. Jie Ma & Ming Zhang & Jianhua Wu & Qiwei Yang & Guangdong Wen & Baogen Su & Qilong Ren, 2017. "Hydropyrolysis of n- Hexane and Toluene to Acetylene in Rotating-Arc Plasma," Energies, MDPI, vol. 10(7), pages 1-12, July.
    4. Ming Zhang & Jie Ma & Baogen Su & Guangdong Wen & Qiwei Yang & Qilong Ren, 2017. "Pyrolysis of Polyolefins Using Rotating Arc Plasma Technology for Production of Acetylene," Energies, MDPI, vol. 10(4), pages 1-13, April.
    5. Tamošiūnas, Andrius & Gimžauskaitė, Dovilė & Uscila, Rolandas & Aikas, Mindaugas, 2019. "Thermal arc plasma gasification of waste glycerol to syngas," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    2. Yevheniia Ziabina & Tetyana Pimonenko, 2020. "The Green Deal Policy for Renewable Energy: A Bibliometric Analysis," Virtual Economics, The London Academy of Science and Business, vol. 3(4), pages 147-168, October.
    3. Jin, Gong & Iwaki, Hiroyuki & Arai, Norio & Kitagawa, Kuniyuki, 2005. "Study on the gasification of wastepaper/carbon dioxide catalyzed by molten carbonate salts," Energy, Elsevier, vol. 30(7), pages 1192-1203.
    4. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    5. Azman, Nadia Farhana & Abdeshahian, Peyman & Kadier, Abudukeremu & Shukor, Hafiza & Al-Shorgani, Najeeb Kaid Nasser & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2016. "Utilization of palm kernel cake as a renewable feedstock for fermentative hydrogen production," Renewable Energy, Elsevier, vol. 93(C), pages 700-708.
    6. Feng, Junfeng & Yang, Zhongzhi & Hse, Chung-yun & Su, Qiuli & Wang, Kui & Jiang, Jianchun & Xu, Junming, 2017. "In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading," Renewable Energy, Elsevier, vol. 105(C), pages 140-148.
    7. Meryemoğlu, Bahar & Hasanoğlu, Arif & Kaya, Burçak & Irmak, Sibel & Erbatur, Oktay, 2014. "Hydrogen production from aqueous-phase reforming of sorghum biomass: An application of the response surface methodology," Renewable Energy, Elsevier, vol. 62(C), pages 535-541.
    8. Saba, N. & Jawaid, M. & Hakeem, K.R. & Paridah, M.T. & Khalina, A. & Alothman, O.Y., 2015. "Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 446-459.
    9. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    10. Aubaid Ullah & Nur Awanis Hashim & Mohamad Fairus Rabuni & Mohd Usman Mohd Junaidi, 2023. "A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency," Energies, MDPI, vol. 16(3), pages 1-35, February.
    11. He, Quan (Sophia) & McNutt, Josiah & Yang, Jie, 2017. "Utilization of the residual glycerol from biodiesel production for renewable energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 63-76.
    12. Carvalho, Lara & Lundgren, Joakim & Wetterlund, Elisabeth & Wolf, Jens & Furusjö, Erik, 2018. "Methanol production via black liquor co-gasification with expanded raw material base – Techno-economic assessment," Applied Energy, Elsevier, vol. 225(C), pages 570-584.
    13. Geun Ho Gu & Miriam Lee & Yousung Jung & Dionisios G. Vlachos, 2022. "Automated exploitation of the big configuration space of large adsorbates on transition metals reveals chemistry feasibility," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Dehghan, Leila & Golmakani, Mohammad-Taghi & Hosseini, Seyed Mohammad Hashem, 2019. "Optimization of microwave-assisted accelerated transesterification of inedible olive oil for biodiesel production," Renewable Energy, Elsevier, vol. 138(C), pages 915-922.
    15. Abel Rodrigues & João Carlos Bordado & Rui Galhano dos Santos, 2017. "Upgrading the Glycerol from Biodiesel Production as a Source of Energy Carriers and Chemicals—A Technological Review for Three Chemical Pathways," Energies, MDPI, vol. 10(11), pages 1-36, November.
    16. Ane Caroline Pereira Borges & Jude Azubuike Onwudili & Heloysa Andrade & Carine Alves & Andrew Ingram & Silvio Vieira de Melo & Ednildo Torres, 2020. "Catalytic Properties and Recycling of NiFe 2 O 4 Catalyst for Hydrogen Production by Supercritical Water Gasification of Eucalyptus Wood Chips," Energies, MDPI, vol. 13(17), pages 1-17, September.
    17. Yi Zhang & Mingting Kou & Kaihua Chen & Jiancheng Guan & Yuchen Li, 2016. "Modelling the Basic Research Competitiveness Index (BR-CI) with an application to the biomass energy field," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1221-1241, September.
    18. Zhou, Yuli & Wang, Wenlong & Sun, Jing & Fu, Lunjing & Song, Zhanlong & Zhao, Xiqiang & Mao, Yanpeng, 2017. "Microwave-induced electrical discharge of metal strips for the degradation of biomass tar," Energy, Elsevier, vol. 126(C), pages 42-52.
    19. He, Chao & Chen, Chia-Lung & Giannis, Apostolos & Yang, Yanhui & Wang, Jing-Yuan, 2014. "Hydrothermal gasification of sewage sludge and model compounds for renewable hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1127-1142.
    20. Su, Hongcai & Yan, Mi & Wang, Shurong, 2022. "Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:123:y:2017:i:c:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.