IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v111y2016icp642-652.html
   My bibliography  Save this article

A well-to-wire life cycle assessment of Canadian shale gas for electricity generation in China

Author

Listed:
  • Raj, Ratan
  • Ghandehariun, Samane
  • Kumar, Amit
  • Linwei, Ma

Abstract

China relies heavily on coal for power generation, and the demand for coal in a country of this size makes China the world's largest carbon dioxide emitter; hence China is pursuing greener pathways for power generation. Importing shale gas in the form of LNG from Canada is one such pathway. It starts with the recovery of shale gas in Canada and its export to China. This paper quantifies well-to-wire (WTW) greenhouse gas (GHG) emissions per kilowatt hour (kWh) of Canadian shale gas-fuelled electricity in China through models. WTW emissions include emissions from recovery, processing, transmission, liquefaction, marine shipping, re-gasification, power plant operations, and electricity transmission and distribution. Four Canadian shale gas reserves – Montney, Horn River, Liard, and Cordova – are considered. The results show that the WTW GHG emissions of Canadian shale gas-fired combined cycle technology range from 567 to 610 gCO2/kWh (57–62% of the GHG emissions from China's present coal-fired electricity), and total well-to-port (WTP) GHG emissions (emissions from recovery, processing, and transmission to a liquefaction facility) range from 7.68 to 13.4 gCO2e/MJ. Sensitivity analysis results show that venting emissions during raw gas processing, flaring rates during well completion, and lifetime productivity of the gas significantly influence WTP emissions.

Suggested Citation

  • Raj, Ratan & Ghandehariun, Samane & Kumar, Amit & Linwei, Ma, 2016. "A well-to-wire life cycle assessment of Canadian shale gas for electricity generation in China," Energy, Elsevier, vol. 111(C), pages 642-652.
  • Handle: RePEc:eee:energy:v:111:y:2016:i:c:p:642-652
    DOI: 10.1016/j.energy.2016.05.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216306971
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.05.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Daejun & Rhee, Taejin & Nam, Kiil & Chang, Kwangpil & Lee, Donghun & Jeong, Samheon, 2008. "A study on availability and safety of new propulsion systems for LNG carriers," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1877-1885.
    2. Stamford, Laurence & Azapagic, Adisa, 2014. "Life cycle environmental impacts of UK shale gas," Applied Energy, Elsevier, vol. 134(C), pages 506-518.
    3. Adam R. Brandt, 2011. "Oil Depletion and the Energy Efficiency of Oil Production: The Case of California," Sustainability, MDPI, vol. 3(10), pages 1-22, October.
    4. Dong, Jun & Zhang, Xu & Xu, Xiaolin, 2012. "Techno-economic assessment and policy of gas power generation considering the role of multiple stakeholders in China," Energy Policy, Elsevier, vol. 48(C), pages 209-221.
    5. Chang, Yuan & Huang, Runze & Ries, Robert J. & Masanet, Eric, 2014. "Shale-to-well energy use and air pollutant emissions of shale gas production in China," Applied Energy, Elsevier, vol. 125(C), pages 147-157.
    6. Aguilera, Roberto F. & Inchauspe, Julian & Ripple, Ronald D., 2014. "The Asia Pacific natural gas market: Large enough for all?," Energy Policy, Elsevier, vol. 65(C), pages 1-6.
    7. Chang, Yuan & Huang, Runze & Ries, Robert J. & Masanet, Eric, 2015. "Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China," Energy, Elsevier, vol. 86(C), pages 335-343.
    8. Krupnick, Alan & Wang, Zhongmin & Wang, Yushuang, 2014. "Environmental risks of shale gas development in China," Energy Policy, Elsevier, vol. 75(C), pages 117-125.
    9. Rahman, Md. Mustafizur & Canter, Christina & Kumar, Amit, 2015. "Well-to-wheel life cycle assessment of transportation fuels derived from different North American conventional crudes," Applied Energy, Elsevier, vol. 156(C), pages 159-173.
    10. Aguilera, Roberto F. & Ripple, Ronald D., 2013. "Modeling primary energy substitution in the Asia Pacific," Applied Energy, Elsevier, vol. 111(C), pages 219-224.
    11. Weijermars, Ruud, 2014. "US shale gas production outlook based on well roll-out rate scenarios," Applied Energy, Elsevier, vol. 124(C), pages 283-297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hussein Al-Yafei & Murat Kucukvar & Ahmed AlNouss & Saleh Aseel & Nuri C. Onat, 2021. "A Novel Hybrid Life Cycle Assessment Approach to Air Emissions and Human Health Impacts of Liquefied Natural Gas Supply Chain," Energies, MDPI, vol. 14(19), pages 1-32, October.
    2. Murillo Vetroni Barros & Cassiano Moro Piekarski & Antonio Carlos De Francisco, 2018. "Carbon Footprint of Electricity Generation in Brazil: An Analysis of the 2016–2026 Period," Energies, MDPI, vol. 11(6), pages 1-14, June.
    3. Ramirez, Angel D. & Rivela, Beatriz & Boero, Andrea & Melendres, Ana M., 2019. "Lights and shadows of the environmental impacts of fossil-based electricity generation technologies: A contribution based on the Ecuadorian experience," Energy Policy, Elsevier, vol. 125(C), pages 467-477.
    4. Zhang, Jinrui & Meerman, Hans & Benders, René & Faaij, André, 2021. "Techno-economic and life cycle greenhouse gas emissions assessment of liquefied natural gas supply chain in China," Energy, Elsevier, vol. 224(C).
    5. Davis, M. & Okunlola, A. & Di Lullo, G. & Giwa, T. & Kumar, A., 2023. "Greenhouse gas reduction potential and cost-effectiveness of economy-wide hydrogen-natural gas blending for energy end uses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jianliang & Liu, Mingming & McLellan, Benjamin C. & Tang, Xu & Feng, Lianyong, 2017. "Environmental impacts of shale gas development in China: A hybrid life cycle analysis," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 38-45.
    2. David J. Murphy & Marco Raugei & Michael Carbajales-Dale & Brenda Rubio Estrada, 2022. "Energy Return on Investment of Major Energy Carriers: Review and Harmonization," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    3. Zou, Youqin & Yang, Changbing & Wu, Daishe & Yan, Chun & Zeng, Masun & Lan, Yingying & Dai, Zhenxue, 2016. "Probabilistic assessment of shale gas production and water demand at Xiuwu Basin in China," Applied Energy, Elsevier, vol. 180(C), pages 185-195.
    4. Li, Yanbin & Li, Yun & Wang, Bingqian & Chen, Zhuoer & Nie, Dan, 2016. "The status quo review and suggested policies for shale gas development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 420-428.
    5. Yang, Xianyu & Cai, Jihua & Jiang, Guosheng & Zhang, Yungen & Shi, Yanping & Chen, Shuya & Yue, Ye & Wei, Zhaohui & Yin, Dezhan & Li, Hua, 2022. "Modeling of nanoparticle fluid microscopic plugging effect on horizontal and vertical wellbore of shale gas," Energy, Elsevier, vol. 239(PB).
    6. Yuan, Jiehui & Luo, Dongkun & Xia, Liangyu & Feng, Lianyong, 2015. "Policy recommendations to promote shale gas development in China based on a technical and economic evaluation," Energy Policy, Elsevier, vol. 85(C), pages 194-206.
    7. Ramirez, Angel D. & Rivela, Beatriz & Boero, Andrea & Melendres, Ana M., 2019. "Lights and shadows of the environmental impacts of fossil-based electricity generation technologies: A contribution based on the Ecuadorian experience," Energy Policy, Elsevier, vol. 125(C), pages 467-477.
    8. Ren, Jingzheng & Tan, Shiyu & Goodsite, Michael Evan & Sovacool, Benjamin K. & Dong, Lichun, 2015. "Sustainability, shale gas, and energy transition in China: Assessing barriers and prioritizing strategic measures," Energy, Elsevier, vol. 84(C), pages 551-562.
    9. Chen, Yuntian & Jiang, Su & Zhang, Dongxiao & Liu, Chaoyang, 2017. "An adsorbed gas estimation model for shale gas reservoirs via statistical learning," Applied Energy, Elsevier, vol. 197(C), pages 327-341.
    10. Yuan Chang & Guijun Li & Yuan Yao & Lixiao Zhang & Chang Yu, 2016. "Quantifying the Water-Energy-Food Nexus: Current Status and Trends," Energies, MDPI, vol. 9(2), pages 1-17, January.
    11. Yao, Liuyang & Sui, Bo, 2020. "Heterogeneous preferences for shale water management: Evidence from a choice experiment in Fuling shale gas field, southwest China," Energy Policy, Elsevier, vol. 147(C).
    12. Grecu, Eugenia & Aceleanu, Mirela Ionela & Albulescu, Claudiu Tiberiu, 2018. "The economic, social and environmental impact of shale gas exploitation in Romania: A cost-benefit analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 691-700.
    13. Mishra, Vinod & Smyth, Russell, 2014. "Convergence in energy consumption per capita among ASEAN countries," Energy Policy, Elsevier, vol. 73(C), pages 180-185.
    14. Verma, Aman & Kumar, Amit, 2015. "Life cycle assessment of hydrogen production from underground coal gasification," Applied Energy, Elsevier, vol. 147(C), pages 556-568.
    15. Jang, Hayoung & Jeong, Byongug & Zhou, Peilin & Ha, Seungman & Nam, Dong, 2021. "Demystifying the lifecycle environmental benefits and harms of LNG as marine fuel," Applied Energy, Elsevier, vol. 292(C).
    16. Meza, Abel & Koç, Muammer & Al-Sada, Mohammed Saleh, 2022. "Perspectives and strategies for LNG expansion in Qatar: A SWOT analysis," Resources Policy, Elsevier, vol. 76(C).
    17. Shi, Xunpeng & Padinjare Variam, Hari Malamakkavu, 2016. "Gas and LNG trading hubs, hub indexation and destination flexibility in East Asia," Energy Policy, Elsevier, vol. 96(C), pages 587-596.
    18. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    19. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    20. Ye, Bin & Yang, Peng & Jiang, Jingjing & Miao, Lixin & Shen, Bo & Li, Ji, 2017. "Feasibility and economic analysis of a renewable energy powered special town in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 40-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:111:y:2016:i:c:p:642-652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.