IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v85y2015icp94-101.html
   My bibliography  Save this article

Energy consumption and GHG emissions from China's freight transport sector: Scenarios through 2050

Author

Listed:
  • Hao, Han
  • Geng, Yong
  • Li, Weiqi
  • Guo, Bin

Abstract

China's freight transport volume experienced rapid growth over recent years, causing great concerns over its energy and environmental impacts. In this study, by establishing a bottom-up accounting framework, a set of scenarios reflecting the possible future trajectories of energy consumption and Greenhouse Gas (GHG) emissions from China's freight transport sector are developed. According to our estimation, GHG emissions from China's freight transport sector were 788mt CO2e in 2013, roughly accounting for 8% of nationwide GHG emissions. Under Business-As-Usual (BAU) scenario, energy consumption and GHG emissions in 2050 will be 2.5 and 2.4 times the current levels. GHG emissions will peak by 2045 at the level of 1918mt CO2e. With all major mitigation measures implemented, energy consumption and GHG emissions in 2050 can be reduced by 30% and 32%, respectively. Besides, GHG emissions will peak earlier by around 2035 at a much lower level than under BAU scenario. Our study suggests that in order to keep in pace with China's overall mitigation agenda, aggressive efforts should be made to reduce GHG emissions from freight transport sector.

Suggested Citation

  • Hao, Han & Geng, Yong & Li, Weiqi & Guo, Bin, 2015. "Energy consumption and GHG emissions from China's freight transport sector: Scenarios through 2050," Energy Policy, Elsevier, vol. 85(C), pages 94-101.
  • Handle: RePEc:eee:enepol:v:85:y:2015:i:c:p:94-101
    DOI: 10.1016/j.enpol.2015.05.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515002098
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2015.05.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zanni, Alberto M. & Bristow, Abigail L., 2010. "Emissions of CO2 from road freight transport in London: Trends and policies for long run reductions," Energy Policy, Elsevier, vol. 38(4), pages 1774-1786, April.
    2. Hao, Han & Geng, Yong & Wang, Hewu & Ouyang, Minggao, 2014. "Regional disparity of urban passenger transport associated GHG (greenhouse gas) emissions in China: A review," Energy, Elsevier, vol. 68(C), pages 783-793.
    3. Cai, Bofeng & Yang, Weishan & Cao, Dong & Liu, Lancui & Zhou, Ying & Zhang, Zhansheng, 2012. "Estimates of China's national and regional transport sector CO2 emissions in 2007," Energy Policy, Elsevier, vol. 41(C), pages 474-483.
    4. Ruzzenenti, F. & Basosi, R., 2009. "Evaluation of the energy efficiency evolution in the European road freight transport sector," Energy Policy, Elsevier, vol. 37(10), pages 4079-4085, October.
    5. Hao, Han & Wang, Hewu & Yi, Ran, 2011. "Hybrid modeling of China’s vehicle ownership and projection through 2050," Energy, Elsevier, vol. 36(2), pages 1351-1361.
    6. Sorrell, Steve & Lehtonen, Markku & Stapleton, Lee & Pujol, Javier & Toby Champion,, 2012. "Decoupling of road freight energy use from economic growth in the United Kingdom," Energy Policy, Elsevier, vol. 41(C), pages 84-97.
    7. Hao, Han & Wang, Hewu & Ouyang, Minggao, 2011. "Comparison of policies on vehicle ownership and use between Beijing and Shanghai and their impacts on fuel consumption by passenger vehicles," Energy Policy, Elsevier, vol. 39(2), pages 1016-1021, February.
    8. Hao, Han & Wang, Hewu & Ouyang, Minggao, 2012. "Fuel consumption and life cycle GHG emissions by China’s on-road trucks: Future trends through 2050 and evaluation of mitigation measures," Energy Policy, Elsevier, vol. 43(C), pages 244-251.
    9. Guo, Bin & Geng, Yong & Franke, Bernd & Hao, Han & Liu, Yaxuan & Chiu, Anthony, 2014. "Uncovering China’s transport CO2 emission patterns at the regional level," Energy Policy, Elsevier, vol. 74(C), pages 134-146.
    10. Xunmin Ou & Xiliang Zhang & Xu Zhang & Qian Zhang, 2013. "Life Cycle GHG of NG-Based Fuel and Electric Vehicle in China," Energies, MDPI, vol. 6(5), pages 1-19, May.
    11. Hao, Han & Wang, Hewu & Ouyang, Minggao, 2011. "Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet," Energy, Elsevier, vol. 36(11), pages 6520-6528.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi, 2016. "Natural gas as vehicle fuel in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 521-533.
    2. Luo, Xiao & Dong, Liang & Dou, Yi & Liang, Hanwei & Ren, Jingzheng & Fang, Kai, 2016. "Regional disparity analysis of Chinese freight transport CO2 emissions from 1990 to 2007: Driving forces and policy challenges," Journal of Transport Geography, Elsevier, vol. 56(C), pages 1-14.
    3. Hao, Han & Geng, Yong & Wang, Hewu & Ouyang, Minggao, 2014. "Regional disparity of urban passenger transport associated GHG (greenhouse gas) emissions in China: A review," Energy, Elsevier, vol. 68(C), pages 783-793.
    4. Hao, Han & Ou, Xunmin & Du, Jiuyu & Wang, Hewu & Ouyang, Minggao, 2014. "China’s electric vehicle subsidy scheme: Rationale and impacts," Energy Policy, Elsevier, vol. 73(C), pages 722-732.
    5. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    6. Hao, Han & Liu, Zongwei & Zhao, Fuquan, 2017. "An overview of energy efficiency standards in China's transport sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 246-256.
    7. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi & Hang, Wen, 2015. "Scenario analysis of energy consumption and greenhouse gas emissions from China's passenger vehicles," Energy, Elsevier, vol. 91(C), pages 151-159.
    8. Han Hao & Feiqi Liu & Zongwei Liu & Fuquan Zhao, 2017. "Measuring Energy Efficiency in China’s Transport Sector," Energies, MDPI, vol. 10(5), pages 1-18, May.
    9. Hualong Yang & Xuefei Ma & Yuwei Xing, 2017. "Trends in CO 2 Emissions from China-Oriented International Marine Transportation Activities and Policy Implications," Energies, MDPI, vol. 10(7), pages 1-17, July.
    10. Jialin Liu & Yi Zhu & Qun Zhang & Fangyan Cheng & Xi Hu & Xinhong Cui & Lang Zhang & Zhenglin Sun, 2020. "Transportation Carbon Emissions from a Perspective of Sustainable Development in Major Cities of Yangtze River Delta, China," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
    11. Linna Li, 2019. "Structure and influencing factors of CO2 emissions from transport sector in three major metropolitan regions of China: estimation and decomposition," Transportation, Springer, vol. 46(4), pages 1245-1269, August.
    12. Hao, Han & Liu, Feiqi & Liu, Zongwei & Zhao, Fuquan, 2016. "Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions," Applied Energy, Elsevier, vol. 181(C), pages 391-398.
    13. Han Hao & Feiqi Liu & Xin Sun & Zongwei Liu & Fuquan Zhao, 2019. "Quantifying the Energy, Environmental, Economic, Resource Co-Benefits and Risks of GHG Emissions Abatement: The Case of Passenger Vehicles in China," Sustainability, MDPI, vol. 11(5), pages 1-12, March.
    14. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Ruzzenenti, Franco & Basosi, Riccardo, 2017. "Modelling the rebound effect with network theory: An insight into the European freight transport sector," Energy, Elsevier, vol. 118(C), pages 272-283.
    16. Hao, Han & Wang, Sinan & Liu, Zongwei & Zhao, Fuquan, 2016. "The impact of stepped fuel economy targets on automaker's light-weighting strategy: The China case," Energy, Elsevier, vol. 94(C), pages 755-765.
    17. Li, Weiqi & Dai, Yaping & Ma, Linwei & Hao, Han & Lu, Haiyan & Albinson, Rosemary & Li, Zheng, 2015. "Oil-saving pathways until 2030 for road freight transportation in China based on a cost-optimization model," Energy, Elsevier, vol. 86(C), pages 369-384.
    18. Guo, Bin & Geng, Yong & Franke, Bernd & Hao, Han & Liu, Yaxuan & Chiu, Anthony, 2014. "Uncovering China’s transport CO2 emission patterns at the regional level," Energy Policy, Elsevier, vol. 74(C), pages 134-146.
    19. Goh, Tian & Zhong, Sheng & Ang, B.W. & Su, Bin & Ng, Szu Hui & Chai, Kah-Hin, 2021. "Driving factors of changes in international maritime energy consumption: Microdata evidence 2014–2017," Energy Policy, Elsevier, vol. 154(C).
    20. Jiefang Dong & Chun Deng & Rongrong Li & Jieyu Huang, 2016. "Moving Low-Carbon Transportation in Xinjiang: Evidence from STIRPAT and Rigid Regression Models," Sustainability, MDPI, vol. 9(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:85:y:2015:i:c:p:94-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.