IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i8p2821-2828.html
   My bibliography  Save this article

Towards a framework of clean energy technology receptivity

Author

Listed:
  • Thorne, Steve

Abstract

Technology invention, innovation and transfer have been a constant of human evolution. Facing humanity is the threat of anthropogenic climate change, the solution to which is to reduce the rate at which greenhouse gasses (GHGs) are building up in the atmosphere and to deal with the impacts of climate variability and change. To deal with the global crisis requires technology invention, innovation and transfer and changes in behaviour that reduce the GHGs intensity of energy services. Meanwhile, the poverty reduction and development agenda are being shaped by the Millennium Development Goals, which slowly appears to be gaining buy-in. The question is how will the accelerated receipt of cleaner energy technologies can be successfully achieved in marginalised communities in developing countries? The paper considers a range of drivers, case studies and projects that are being undertaken as early Clean Development Mechanism experiments under the banner of the International SouthSouthNorth Group. It discusses the drivers of technology transfer and starts to unpack the elements of successful receptivity through selection and ownership of the newly introduced environmentally safe technologies (ESTs) for the provision of energy services.

Suggested Citation

  • Thorne, Steve, 2008. "Towards a framework of clean energy technology receptivity," Energy Policy, Elsevier, vol. 36(8), pages 2821-2828, August.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:8:p:2821-2828
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00116-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Freeman, Chris, 1994. "The Economics of Technical Change," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 18(5), pages 463-514, October.
    2. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morsink, Karlijn & Hofman, Peter S. & Lovett, Jon C., 2011. "Multi-stakeholder partnerships for transfer of environmentally soundtechnologies," Energy Policy, Elsevier, vol. 39(1), pages 1-5, January.
    2. Doranova, Asel & Costa, Ionara & Duysters, Geert, 2010. "Knowledge base determinants of technology sourcing in clean development mechanism projects," Energy Policy, Elsevier, vol. 38(10), pages 5550-5559, October.
    3. Lovett, Jon C. & Hofman, Peter S. & Morsink, Karlijn & Torres, Arturo Balderas & Clancy, Joy S. & Krabbendam, Koos, 2009. "Review of the 2008 UNFCCC meeting in Poznan," Energy Policy, Elsevier, vol. 37(9), pages 3701-3705, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory F. Nemet, 2006. "How well does Learning-by-doing Explain Cost Reductions in a Carbon-free Energy Technology?," Working Papers 2006.143, Fondazione Eni Enrico Mattei.
    2. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    3. Ma, T. & Grubler, A. & Nakamori, Y., 2009. "Modeling technology adoptions for sustainable development under increasing returns, uncertainty, and heterogeneous agents," European Journal of Operational Research, Elsevier, vol. 195(1), pages 296-306, May.
    4. Arnulf Grübler & Nebojsa Nakicenovic & Joe Alcamo & Ged Davis & Joergen Fenhann & Bill Hare & Shunsuke Mori & Bill Pepper & Hugh Pitcher & Keywan Riahi & Hans-Holger Rogner & Emilo Lebre La Rovere & , 2004. "Emissions Scenarios: A Final Response," Energy & Environment, , vol. 15(1), pages 11-24, January.
    5. Wei Jin & ZhongXiang Zhang, 2014. "Explaining the Slow Pace of Energy Technological Innovation: Why Market Conditions Matter," CCEP Working Papers 1401, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    6. Philip Cooke, 2002. "Biotechnology Clusters as Regional, Sectoral Innovation Systems," International Regional Science Review, , vol. 25(1), pages 8-37, January.
    7. Rosendahl, Knut Einar, 2004. "Cost-effective environmental policy: implications of induced technological change," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1099-1121, November.
    8. Mazzanti, Massimiliano & Montini, Anna & Zoboli, Roberto, 2006. "Municipal Waste Production, Economic Drivers, and 'New' Waste Policies: EKC Evidence from Italian Regional and Provincial Panel Data," Climate Change Modelling and Policy Working Papers 12053, Fondazione Eni Enrico Mattei (FEEM).
    9. Havas, Attila & Weber, K. Matthias, 2017. "The 'fit' between forward-looking activities and the innovation policy governance sub-system: A framework to explore potential impacts," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 327-337.
    10. T. Gries & R. Grundmann & I. Palnau & M. Redlin, 2017. "Innovations, growth and participation in advanced economies - a review of major concepts and findings," International Economics and Economic Policy, Springer, vol. 14(2), pages 293-351, April.
    11. Andrés Barge-Gil & Alberto López, 2015. "R versus D: estimating the differentiated effect of research and development on innovation results," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(1), pages 93-129.
    12. Ekaterina Prytkova, 2021. "ICT's Wide Web: a System-Level Analysis of ICT's Industrial Diffusion with Algorithmic Links," Jena Economics Research Papers 2021-005, Friedrich-Schiller-University Jena.
    13. Mohan Babu, G.N., 1999. "The Determinants of Firm-level Technological Performances - A Study on the Indian Capital Goods Sector," UNU-INTECH Discussion Paper Series 1999-01, United Nations University - INTECH.
    14. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    15. Christiansen, Atle Christer, 2002. "New renewable energy developments and the climate change issue: a case study of Norwegian politics," Energy Policy, Elsevier, vol. 30(3), pages 235-243, February.
    16. Maxim Kotsemir & Alexander Abroskin & Dirk Meissner, 2013. "Innovation concepts and typology – an evolutionary discussion," HSE Working papers WP BRP 05/STI/2013, National Research University Higher School of Economics.
    17. Mark J. McCabe & Christopher M. Snyder, 2015. "Does Online Availability Increase Citations? Theory and Evidence from a Panel of Economics and Business Journals," The Review of Economics and Statistics, MIT Press, vol. 97(1), pages 144-165, March.
    18. Xavier Ragot, 2003. "Division du travail et progrès technique," Revue économique, Presses de Sciences-Po, vol. 54(4), pages 725-741.
    19. Havas, Attila, 2004. "EU Enlargement and Innovation Policy in Central European Countries: The case of Hungary," MPRA Paper 69872, University Library of Munich, Germany.
    20. Xu, Lei & Su, Jun, 2016. "From government to market and from producer to consumer: Transition of policy mix towards clean mobility in China," Energy Policy, Elsevier, vol. 96(C), pages 328-340.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:8:p:2821-2828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.