IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v84y2019ics0140988319302403.html
   My bibliography  Save this article

Spillover effects of distribution grid tariffs in the internal electricity market: An argument for harmonization?

Author

Listed:
  • Govaerts, Niels
  • Bruninx, Kenneth
  • Le Cadre, Hélène
  • Meeus, Leonardo
  • Delarue, Erik

Abstract

In many countries, distribution grid tariffs are being reformed to adapt to the new realities of an electricity system with distributed energy resources. In Europe, legislative proposals have been made to harmonize these reforms across country borders. Many stakeholders have argued that distribution tariffs are a local affair, while the European institutions argued that there can be spillovers to other countries, which could justify a more harmonized approach. In this paper, we quantify these spillovers in a simplified numerical example to give insight and an order of magnitude. We look at different scenarios, and find that the spillovers can be both negative and positive. To be able to quantify these effects, we developed a long-run market equilibrium model that captures the wholesale market effects of distribution grid tariffs. The problem is formulated as a non-cooperative game involving consumers, generating companies and distribution system operators in a stylized electricity market.

Suggested Citation

  • Govaerts, Niels & Bruninx, Kenneth & Le Cadre, Hélène & Meeus, Leonardo & Delarue, Erik, 2019. "Spillover effects of distribution grid tariffs in the internal electricity market: An argument for harmonization?," Energy Economics, Elsevier, vol. 84(C).
  • Handle: RePEc:eee:eneeco:v:84:y:2019:i:c:s0140988319302403
    DOI: 10.1016/j.eneco.2019.07.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988319302403
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2019.07.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven A. Gabriel & Antonio J. Conejo & J. David Fuller & Benjamin F. Hobbs & Carlos Ruiz, 2013. "Complementarity Modeling in Energy Markets," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4419-6123-5, December.
    2. Brown, David P. & Sappington, David E.M., 2018. "On the role of maximum demand charges in the presence of distributed generation resources," Energy Economics, Elsevier, vol. 69(C), pages 237-249.
    3. EHRENMANN, Andreas & SMEERS, Yves, 2011. "Generation capacity expansion in a risky environment: a stochastic equilibrium analysis," LIDAM Reprints CORE 2379, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Michael G. Pollitt, 2018. "Electricity Network Charging in the Presence of Distributed Energy Resources: Principles, Problems and Solutions," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    5. Laws, Nicholas D. & Epps, Brenden P. & Peterson, Steven O. & Laser, Mark S. & Wanjiru, G. Kamau, 2017. "On the utility death spiral and the impact of utility rate structures on the adoption of residential solar photovoltaics and energy storage," Applied Energy, Elsevier, vol. 185(P1), pages 627-641.
    6. Eid, Cherrelle & Reneses Guillén, Javier & Frías Marín, Pablo & Hakvoort, Rudi, 2014. "The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives," Energy Policy, Elsevier, vol. 75(C), pages 244-254.
    7. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    8. Saguan, Marcelo & Meeus, Leonardo, 2014. "Impact of the regulatory framework for transmission investments on the cost of renewable energy in the EU," Energy Economics, Elsevier, vol. 43(C), pages 185-194.
    9. David P. Brown & David E. M. Sappington, 2017. "Designing Compensation for Distributed Solar Generation: Is Net Metering Ever Optimal?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    10. Andreas Ehrenmann & Yves Smeers, 2011. "Generation Capacity Expansion in a Risky Environment: A Stochastic Equilibrium Analysis," Operations Research, INFORMS, vol. 59(6), pages 1332-1346, December.
    11. Jinye Zhao & Benjamin F. Hobbs & Jong-Shi Pang, 2010. "Long-Run Equilibrium Modeling of Emissions Allowance Allocation Systems in Electric Power Markets," Operations Research, INFORMS, vol. 58(3), pages 529-548, June.
    12. H. Uzawa, 1960. "Walras' Tâtonnement in the Theory of Exchange," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 27(3), pages 182-194.
    13. Richard Green & Nicholas Vasilakos, 2011. "The Long-term Impact of Wind Power on Electricity Prices and Generating Capacity," Discussion Papers 11-09, Department of Economics, University of Birmingham.
    14. Hanspeter Höschle & Hélène le Cadre, & Yves Smeers & Anthony Papavasiliou & Ronnie Belmans, 2018. "An ADMM-based method for computing risk-averse equilibrium in capacity markets," LIDAM Reprints CORE 3020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Simshauser, Paul, 2016. "Distribution network prices and solar PV: Resolving rate instability and wealth transfers through demand tariffs," Energy Economics, Elsevier, vol. 54(C), pages 108-122.
    16. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    17. Abdelmotteleb, Ibtihal & Gómez, Tomás & Chaves Ávila, José Pablo & Reneses, Javier, 2018. "Designing efficient distribution network charges in the context of active customers," Applied Energy, Elsevier, vol. 210(C), pages 815-826.
    18. Schittekatte, Tim & Momber, Ilan & Meeus, Leonardo, 2018. "Future-proof tariff design: Recovering sunk grid costs in a world where consumers are pushing back," Energy Economics, Elsevier, vol. 70(C), pages 484-498.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moncada, J.A. & Tao, Z. & Valkering, P. & Meinke-Hubeny, F. & Delarue, E., 2021. "Influence of distribution tariff structures and peer effects on the adoption of distributed energy resources," Applied Energy, Elsevier, vol. 298(C).
    2. Hendam, Mohamed & Schittekatte, Tim & Abdel-Rahman, Mohamed & Kamh, Mohamed Zakaria, 2022. "Rethinking electricity rate design: Fostering the energy transition in North Africa," Energy Policy, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoarau, Quentin & Perez, Yannick, 2019. "Network tariff design with prosumers and electromobility: Who wins, who loses?," Energy Economics, Elsevier, vol. 83(C), pages 26-39.
    2. Avau, Michiel & Govaerts, Niels & Delarue, Erik, 2021. "Impact of distribution tariffs on prosumer demand response," Energy Policy, Elsevier, vol. 151(C).
    3. Morell-Dameto, Nicolás & Chaves-Ávila, José Pablo & Gómez San Román, Tomás & Schittekatte, Tim, 2023. "Forward-looking dynamic network charges for real-world electricity systems: A Slovenian case study," Energy Economics, Elsevier, vol. 125(C).
    4. Miguel Manuel de Villena & Raphael Fonteneau & Axel Gautier & Damien Ernst, 2019. "Evaluating the Evolution of Distribution Networks under Different Regulatory Frameworks with Multi-Agent Modelling," Energies, MDPI, vol. 12(7), pages 1-15, March.
    5. Hendam, Mohamed & Schittekatte, Tim & Abdel-Rahman, Mohamed & Kamh, Mohamed Zakaria, 2022. "Rethinking electricity rate design: Fostering the energy transition in North Africa," Energy Policy, Elsevier, vol. 169(C).
    6. Spiller, Elisheba & Esparza, Ricardo & Mohlin, Kristina & Tapia-Ahumada, Karen & Ünel, Burçin, 2023. "The role of electricity tariff design in distributed energy resource deployment," Energy Economics, Elsevier, vol. 120(C).
    7. Askeland, Magnus & Backe, Stian & Bjarghov, Sigurd & Korpås, Magnus, 2021. "Helping end-users help each other: Coordinating development and operation of distributed resources through local power markets and grid tariffs," Energy Economics, Elsevier, vol. 94(C).
    8. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    9. Timothé Beaufils & Pierre-Olivier Pineau, 2018. "Structures tarifaires et spirale de la mort : État des lieux des pratiques de tarification dans la distribution d’électricité résidentielle," CIRANO Working Papers 2018s-27, CIRANO.
    10. Savelli, Iacopo & De Paola, Antonio & Li, Furong, 2020. "Ex-ante dynamic network tariffs for transmission cost recovery," Applied Energy, Elsevier, vol. 258(C).
    11. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    12. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2021. "Rate design with distributed energy resources and electric vehicles: A Californian case study," Energy Economics, Elsevier, vol. 102(C).
    13. Bovera, Filippo & Delfanti, Maurizio & Fumagalli, Elena & Lo Schiavo, Luca & Vailati, Riccardo, 2021. "Regulating electricity distribution networks under technological and demand uncertainty," Energy Policy, Elsevier, vol. 149(C).
    14. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    15. Beaufils, Timothé & Pineau, Pierre-Olivier, 2019. "Assessing the impact of residential load profile changes on electricity distribution utility revenues under alternative rate structures," Utilities Policy, Elsevier, vol. 61(C).
    16. Khan, Agha Salman M. & Verzijlbergh, Remco A. & Sakinci, Ozgur Can & De Vries, Laurens J., 2018. "How do demand response and electrical energy storage affect (the need for) a capacity market?," Applied Energy, Elsevier, vol. 214(C), pages 39-62.
    17. Manuel de Villena, Miguel & Jacqmin, Julien & Fonteneau, Raphael & Gautier, Axel & Ernst, Damien, 2021. "Network tariffs and the integration of prosumers: The case of Wallonia," Energy Policy, Elsevier, vol. 150(C).
    18. Nicolás Morell Dameto & José Pablo Chaves-Ávila & Tomás Gómez San Román, 2020. "Revisiting Electricity Network Tariffs in a Context of Decarbonization, Digitalization, and Decentralization," Energies, MDPI, vol. 13(12), pages 1-21, June.
    19. James H. Merrick & John E. T. Bistline & Geoffrey J. Blanford, 2021. "On representation of energy storage in electricity planning models," Papers 2105.03707, arXiv.org, revised May 2021.
    20. René Aïd & Matteo Basei & Huyên Pham, 2020. "A McKean–Vlasov approach to distributed electricity generation development," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 269-310, April.

    More about this item

    Keywords

    Distribution grid tariff design; Distributed energy resources; Non-cooperative game; Energy policy; Spillovers;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis
    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:84:y:2019:i:c:s0140988319302403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.