IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v85y1995i3p541-555.html
   My bibliography  Save this article

Minimizing total tardiness in permutation flowshops

Author

Listed:
  • Kim, Yeong-Dae

Abstract

No abstract is available for this item.

Suggested Citation

  • Kim, Yeong-Dae, 1995. "Minimizing total tardiness in permutation flowshops," European Journal of Operational Research, Elsevier, vol. 85(3), pages 541-555, September.
  • Handle: RePEc:eee:ejores:v:85:y:1995:i:3:p:541-555
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0377-2217(94)00029-C
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. J. Lageweg & J. K. Lenstra & A. H. G. Rinnooy Kan, 1978. "A General Bounding Scheme for the Permutation Flow-Shop Problem," Operations Research, INFORMS, vol. 26(1), pages 53-67, February.
    2. Edward Ignall & Linus Schrage, 1965. "Application of the Branch and Bound Technique to Some Flow-Shop Scheduling Problems," Operations Research, INFORMS, vol. 13(3), pages 400-412, June.
    3. Peng Si Ow, 1985. "Focused Scheduling in Proportionate Flowshops," Management Science, INFORMS, vol. 31(7), pages 852-869, July.
    4. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    5. G. B. McMahon & P. G. Burton, 1967. "Flow-Shop Scheduling with the Branch-and-Bound Method," Operations Research, INFORMS, vol. 15(3), pages 473-481, June.
    6. R. A. Dudek & S. S. Panwalkar & M. L. Smith, 1992. "The Lessons of Flowshop Scheduling Research," Operations Research, INFORMS, vol. 40(1), pages 7-13, February.
    7. Potts, C. N., 1980. "An adaptive branching rule for the permutation flow-shop problem," European Journal of Operational Research, Elsevier, vol. 5(1), pages 19-25, July.
    8. Frieze, A. M. & Yadegar, J., 1989. "A new integer programming formulation for the permutation flowshop problem," European Journal of Operational Research, Elsevier, vol. 40(1), pages 90-98, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Hung-Tso & Liao, Ching-Jong, 2003. "A case study in a two-stage hybrid flow shop with setup time and dedicated machines," International Journal of Production Economics, Elsevier, vol. 86(2), pages 133-143, November.
    2. Lemesre, J. & Dhaenens, C. & Talbi, E.G., 2007. "An exact parallel method for a bi-objective permutation flowshop problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1641-1655, March.
    3. Tirupati Devanath & Peeyush Mehta & Chandra, Pankaj, 2004. "Permutation Flowshop Scheduling with Earliness and Tardiness Penalties," IIMA Working Papers WP2004-07-06, Indian Institute of Management Ahmedabad, Research and Publication Department.
    4. Li, Wei & Nault, Barrie R. & Ye, Honghan, 2019. "Trade-off balancing in scheduling for flow shop production and perioperative processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 817-830.
    5. N Madhushini & C Rajendran & Y Deepa, 2009. "Branch-and-bound algorithms for scheduling in permutation flowshops to minimize the sum of weighted flowtime/sum of weighted tardiness/sum of weighted flowtime and weighted tardiness/sum of weighted f," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 991-1004, July.
    6. Zhang, Yi & Li, Xiaoping & Wang, Qian, 2009. "Hybrid genetic algorithm for permutation flowshop scheduling problems with total flowtime minimization," European Journal of Operational Research, Elsevier, vol. 196(3), pages 869-876, August.
    7. Vallada, Eva & Ruiz, Rubén, 2010. "Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem," Omega, Elsevier, vol. 38(1-2), pages 57-67, February.
    8. Allahverdi, Ali & Aldowaisan, Tariq, 2004. "No-wait flowshops with bicriteria of makespan and maximum lateness," European Journal of Operational Research, Elsevier, vol. 152(1), pages 132-147, January.
    9. Figueira, J.R. & Liefooghe, A. & Talbi, E.-G. & Wierzbicki, A.P., 2010. "A parallel multiple reference point approach for multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 205(2), pages 390-400, September.
    10. Lee, Wen-Chiung & Chung, Yu-Hsiang, 2013. "Permutation flowshop scheduling to minimize the total tardiness with learning effects," International Journal of Production Economics, Elsevier, vol. 141(1), pages 327-334.
    11. Chung, Chia-Shin & Flynn, James & Kirca, Omer, 2006. "A branch and bound algorithm to minimize the total tardiness for m-machine permutation flowshop problems," European Journal of Operational Research, Elsevier, vol. 174(1), pages 1-10, October.
    12. Shim, Sang-Oh & Kim, Yeong-Dae, 2007. "Scheduling on parallel identical machines to minimize total tardiness," European Journal of Operational Research, Elsevier, vol. 177(1), pages 135-146, February.
    13. Chia-Shin Chung & James Flynn & Walter Rom & Piotr Staliński, 2012. "A Genetic Algorithm to Minimize the Total Tardiness for M-Machine Permutation Flowshop Problems," Journal of Entrepreneurship, Management and Innovation, Fundacja Upowszechniająca Wiedzę i Naukę "Cognitione", vol. 8(2), pages 26-43.
    14. Choi, Seong-Woo & Kim, Yeong-Dae, 2009. "Minimizing total tardiness on a two-machine re-entrant flowshop," European Journal of Operational Research, Elsevier, vol. 199(2), pages 375-384, December.
    15. B-J Joo & Y-D Kim, 2009. "A branch-and-bound algorithm for a two-machine flowshop scheduling problem with limited waiting time constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 572-582, April.
    16. Schaller, Jeffrey, 2009. "Note on Shim and Kim's lower bounds for scheduling on identical parallel machines to minimize total tardiness," European Journal of Operational Research, Elsevier, vol. 197(1), pages 422-426, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    2. M Haouari & T Ladhari, 2003. "A branch-and-bound-based local search method for the flow shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1076-1084, October.
    3. Lei Shang & Christophe Lenté & Mathieu Liedloff & Vincent T’Kindt, 2018. "Exact exponential algorithms for 3-machine flowshop scheduling problems," Journal of Scheduling, Springer, vol. 21(2), pages 227-233, April.
    4. Olivier Ploton & Vincent T’kindt, 2023. "Moderate worst-case complexity bounds for the permutation flowshop scheduling problem using Inclusion–Exclusion," Journal of Scheduling, Springer, vol. 26(2), pages 137-145, April.
    5. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    6. Gmys, Jan & Mezmaz, Mohand & Melab, Nouredine & Tuyttens, Daniel, 2020. "A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 814-833.
    7. Jan Gmys, 2022. "Exactly Solving Hard Permutation Flowshop Scheduling Problems on Peta-Scale GPU-Accelerated Supercomputers," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2502-2522, September.
    8. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    9. S Yanai & T Fujie, 2006. "A three-machine permutation flow-shop problem with minimum makespan on the second machine," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 460-468, April.
    10. J M Framinan & J N D Gupta & R Leisten, 2004. "A review and classification of heuristics for permutation flow-shop scheduling with makespan objective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1243-1255, December.
    11. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
    12. Chung, Chia-Shin & Flynn, James & Kirca, Omer, 2002. "A branch and bound algorithm to minimize the total flow time for m-machine permutation flowshop problems," International Journal of Production Economics, Elsevier, vol. 79(3), pages 185-196, October.
    13. N Madhushini & C Rajendran & Y Deepa, 2009. "Branch-and-bound algorithms for scheduling in permutation flowshops to minimize the sum of weighted flowtime/sum of weighted tardiness/sum of weighted flowtime and weighted tardiness/sum of weighted f," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 991-1004, July.
    14. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
    15. P J Kalczynski & J Kamburowski, 2004. "Generalization of Johnson's and Talwar's scheduling rules in two-machine stochastic flow shops," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1358-1362, December.
    16. Ramalhinho Lourenco, Helena, 1996. "Sevast'yanov's algorithm for the flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 176-189, May.
    17. B-J Joo & Y-D Kim, 2009. "A branch-and-bound algorithm for a two-machine flowshop scheduling problem with limited waiting time constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 572-582, April.
    18. Jean-Paul Watson & Laura Barbulescu & L. Darrell Whitley & Adele E. Howe, 2002. "Contrasting Structured and Random Permutation Flow-Shop Scheduling Problems: Search-Space Topology and Algorithm Performance," INFORMS Journal on Computing, INFORMS, vol. 14(2), pages 98-123, May.
    19. Yen-Shing Tsai & Bertrand M. T. Lin, 2016. "Flow shop non-idle scheduling and resource-constrained scheduling," Annals of Operations Research, Springer, vol. 238(1), pages 577-585, March.
    20. D Bai & L Tang, 2010. "New heuristics for flow shop problem to minimize makespan," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(6), pages 1032-1040, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:85:y:1995:i:3:p:541-555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.