IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v308y2023i2p568-580.html
   My bibliography  Save this article

Facility location and pricing problem: Discretized mill price and exact algorithms

Author

Listed:
  • Lin, Yun Hui
  • Tian, Qingyun

Abstract

The joint optimization of facility location and service charge arises in many industrial and business contexts. This paper investigates a facility location and mill pricing problem (FLMPr), where a company aims to maximize its profit by locating service facilities and setting appropriate service charges to customers. For each facility, the number of pricing levels are finite, and the company will select exactly one level for each facility if it is open. We visualize the problem from a fully decentralized perspective, i.e., each customer acts as an independent decision-maker. Under mill pricing, customers visiting the same facility encounter the same service charge. The problem is formulated as a bilevel program, in which the company makes location and pricing decisions at the upper level, and customers decide whether to seek the service from a facility at the lower level. To solve FLMPr, we leverage three types of closest assignment constraints to reformulate the problem as mixed-integer linear programs (MILPs), which can be directly solved by modern solvers. However, this approach suffers from a time-consuming solver compiling process and cannot handle large-scale instances effectively. This observation motivates us to design a branch-and-cut algorithm by exploring the bilevel structure and deriving a feasibility cut to efficiently eliminate bilevel infeasible solutions. Our extensive experiments reveal that the proposed algorithm can solve large-scale FLMPr satisfactorily and outperforms the MILP approach by a large margin. Finally, we conduct sensitivity analysis and draw interesting observations.

Suggested Citation

  • Lin, Yun Hui & Tian, Qingyun, 2023. "Facility location and pricing problem: Discretized mill price and exact algorithms," European Journal of Operational Research, Elsevier, vol. 308(2), pages 568-580.
  • Handle: RePEc:eee:ejores:v:308:y:2023:i:2:p:568-580
    DOI: 10.1016/j.ejor.2022.11.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722009250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.11.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmadi-Javid, Amir & Amiri, Elahe & Meskar, Mahla, 2018. "A Profit-Maximization Location-Routing-Pricing Problem: A Branch-and-Price Algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 866-881.
    2. Espejo, Inmaculada & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2012. "Closest assignment constraints in discrete location problems," European Journal of Operational Research, Elsevier, vol. 219(1), pages 49-58.
    3. Hansen, Pierre & Thisse, Jacques-Francois & Hanjoul, Pierre, 1981. "Simple plant location under uniform delivered pricing," European Journal of Operational Research, Elsevier, vol. 6(2), pages 94-103, February.
    4. Pierre Hanjoul & Pierre Hansen & Dominique Peeters & Jacques-Francois Thisse, 1990. "Uncapacitated Plant Location Under Alternative Spatial Price Policies," Management Science, INFORMS, vol. 36(1), pages 41-57, January.
    5. P Hansen & J-F Thisse, 1977. "Multiplant Location for Profit Maximisation," Environment and Planning A, , vol. 9(1), pages 63-73, January.
    6. Arbib, Claudio & Pınar, Mustafa Ç. & Tonelli, Matteo, 2020. "Competitive location and pricing on a line with metric transportation costs," European Journal of Operational Research, Elsevier, vol. 282(1), pages 188-200.
    7. Teodora Dan & Andrea Lodi & Patrice Marcotte, 2020. "Joint location and pricing within a user-optimized environment," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(1), pages 61-84, March.
    8. Hansen, P. & Peeters, D. & Thisse, J.-F., 1997. "Facility location under zone pricing," LIDAM Reprints CORE 1251, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Jane J. Ye, 2006. "Constraint Qualifications and KKT Conditions for Bilevel Programming Problems," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 811-824, November.
    10. Oded Berman & Zvi Drezner & Arie Tamir & George Wesolowsky, 2009. "Optimal location with equitable loads," Annals of Operations Research, Springer, vol. 167(1), pages 307-325, March.
    11. R Aboolian & O Berman & D Krass, 2008. "Optimizing pricing and location decisions for competitive service facilities charging uniform price," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1506-1519, November.
    12. Zhang, Yue, 2015. "Designing a retail store network with strategic pricing in a competitive environment," International Journal of Production Economics, Elsevier, vol. 159(C), pages 265-273.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Fattahi & M. Mahootchi & S. M. Moattar Husseini, 2016. "Integrated strategic and tactical supply chain planning with price-sensitive demands," Annals of Operations Research, Springer, vol. 242(2), pages 423-456, July.
    2. Ahmadi-Javid, Amir & Amiri, Elahe & Meskar, Mahla, 2018. "A Profit-Maximization Location-Routing-Pricing Problem: A Branch-and-Price Algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 866-881.
    3. Bai, Yun & Ouyang, Yanfeng & Pang, Jong-Shi, 2012. "Biofuel supply chain design under competitive agricultural land use and feedstock market equilibrium," Energy Economics, Elsevier, vol. 34(5), pages 1623-1633.
    4. Mojtaba Farrokh & Ehsan Ahmadi & Minghe Sun, 2023. "A robust stochastic possibilistic programming model for dynamic supply chain network design with pricing and technology selection decisions," OPSEARCH, Springer;Operational Research Society of India, vol. 60(3), pages 1082-1120, September.
    5. Geunes, Joseph & Shen, Zuo-Jun Max & Emir, Akin, 2007. "Planning and approximation models for delivery route based services with price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 183(1), pages 460-471, November.
    6. Zhang, Yue, 2015. "Designing a retail store network with strategic pricing in a competitive environment," International Journal of Production Economics, Elsevier, vol. 159(C), pages 265-273.
    7. Vahideh Sadat Abedi & Oded Berman & Dmitry Krass, 2014. "Supporting New Product or Service Introductions: Location, Marketing, and Word of Mouth," Operations Research, INFORMS, vol. 62(5), pages 994-1013, October.
    8. Teodora Dan & Andrea Lodi & Patrice Marcotte, 2020. "Joint location and pricing within a user-optimized environment," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(1), pages 61-84, March.
    9. Ramamoorthy, Prasanna & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2018. "Multiple allocation hub interdiction and protection problems: Model formulations and solution approaches," European Journal of Operational Research, Elsevier, vol. 270(1), pages 230-245.
    10. Maria Barbati & Giuseppe Bruno & Alfredo Marín, 2016. "Balancing the arrival times of users in a two-stage location problem," Annals of Operations Research, Springer, vol. 246(1), pages 273-288, November.
    11. Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.
    12. Ramamoorthy, Prasanna & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2016. "Hub Interdiction & Hub Protection problems: Model formulations & Exact Solution methods. (Revised)," IIMA Working Papers WP2016-10-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    13. Zhang, Wenwei & Xu, Min & Wang, Shuaian, 2023. "Joint location and pricing optimization of self-service in urban logistics considering customers’ choice behavior," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    14. Ahmadi-Javid, Amir & Hoseinpour, Pooya, 2015. "A location-inventory-pricing model in a supply chain distribution network with price-sensitive demands and inventory-capacity constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 238-255.
    15. repec:bla:jregsc:v:44:y:2004:i:3:p:489-515:1 is not listed on IDEAS
    16. Bronfman, Andrés & Marianov, Vladimir & Paredes-Belmar, Germán & Lüer-Villagra, Armin, 2015. "The maximin HAZMAT routing problem," European Journal of Operational Research, Elsevier, vol. 241(1), pages 15-27.
    17. Sedghi, Nafiseh & Shavandi, Hassan & Abouee-Mehrizi, Hossein, 2017. "Joint pricing and location decisions in a heterogeneous market," European Journal of Operational Research, Elsevier, vol. 261(1), pages 234-246.
    18. Espejo, Inmaculada & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2012. "Closest assignment constraints in discrete location problems," European Journal of Operational Research, Elsevier, vol. 219(1), pages 49-58.
    19. Lorenzo Lampariello & Simone Sagratella, 2015. "It is a matter of hierarchy: a Nash equilibrium problem perspective on bilevel programming," DIAG Technical Reports 2015-07, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    20. Xin Tang & Ameur Soukhal & Vincent T’kindt, 2014. "Preprocessing for a map sectorization problem by means of mathematical programming," Annals of Operations Research, Springer, vol. 222(1), pages 551-569, November.
    21. Kuo, R.J. & Lee, Y.H. & Zulvia, Ferani E. & Tien, F.C., 2015. "Solving bi-level linear programming problem through hybrid of immune genetic algorithm and particle swarm optimization algorithm," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1013-1026.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:308:y:2023:i:2:p:568-580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.