IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v308y2023i2p525-539.html
   My bibliography  Save this article

The stochastic pseudo-star degree centrality problem

Author

Listed:
  • Camur, Mustafa C.
  • Sharkey, Thomas C.
  • Vogiatzis, Chrysafis

Abstract

We introduce the stochastic pseudo-star degree centrality problem, which focuses on a novel probabilistic group-based centrality metric. The goal is to identify a feasible induced pseudo-star, which is defined as a collection of nodes forming a star network with a certain probability, such that it maximizes the sum of the individual probabilities of unique assignments between the star and its open neighborhood. The feasibility is measured as the product of the existence probabilities of edges between the center node and leaf nodes and the product of one minus the existence probabilities of edges among the leaf nodes. First, the problem is shown to be NP-complete. We then propose a non-linear binary optimization model subsequently linearized via McCormick inequalities. We test both classical and modern Benders Decomposition algorithms together with both two- and three-phase decomposition frameworks. Logic-based-Benders cuts are examined as alternative feasibility cuts when needed. The performance of our implementations is tested on small-world (SW) graphs and a real-world protein-protein interaction network. The SW networks resemble large-scale protein-protein interaction networks for which the deterministic star degree centrality has been shown to be an efficient centrality metric to detect essential proteins. Our computational results indicate that Benders implementations outperforms solving the model directly via a commercial solver in terms of both the solution time and the solution quality in every test instance. More importantly, we show that this new centrality metric plays an important role in the identification of essential proteins in real-world networks.

Suggested Citation

  • Camur, Mustafa C. & Sharkey, Thomas C. & Vogiatzis, Chrysafis, 2023. "The stochastic pseudo-star degree centrality problem," European Journal of Operational Research, Elsevier, vol. 308(2), pages 525-539.
  • Handle: RePEc:eee:ejores:v:308:y:2023:i:2:p:525-539
    DOI: 10.1016/j.ejor.2022.11.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722008992
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.11.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bahman Naderi & Kannan Govindan & Hamed Soleimani, 2020. "A Benders decomposition approach for a real case supply chain network design with capacity acquisition and transporter planning: wheat distribution network," Annals of Operations Research, Springer, vol. 291(1), pages 685-705, August.
    2. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David, 2017. "Propagating logic-based Benders’ decomposition approaches for distributed operating room scheduling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 439-455.
    3. Zhong, Haonan & Mahdavi Pajouh, Foad & Prokopyev, Oleg A., 2021. "Finding influential groups in networked systems: The most degree-central clique problem," Omega, Elsevier, vol. 101(C).
    4. Zhang, Zhe & Song, Xiaoling & Huang, Huijung & Zhou, Xiaoyang & Yin, Yong, 2022. "Logic-based Benders decomposition method for the seru scheduling problem with sequence-dependent setup time and DeJong’s learning effect," European Journal of Operational Research, Elsevier, vol. 297(3), pages 866-877.
    5. Simon de Blas, Clara & Simon Martin, Jose & Gomez Gonzalez, Daniel, 2018. "Combined social networks and data envelopment analysis for ranking," European Journal of Operational Research, Elsevier, vol. 266(3), pages 990-999.
    6. Lozano, M. & Molina, D. & GarcI´a-MartI´nez, C., 2011. "Iterated greedy for the maximum diversity problem," European Journal of Operational Research, Elsevier, vol. 214(1), pages 31-38, October.
    7. Hongtan Sun & Thomas C. Sharkey, 2017. "Approximation guarantees of algorithms for fractional optimization problems arising in dispatching rules for INDS problems," Journal of Global Optimization, Springer, vol. 68(3), pages 623-640, July.
    8. N. Absi & C. Archetti & S. Dauzère-Pérès & D. Feillet, 2015. "A Two-Phase Iterative Heuristic Approach for the Production Routing Problem," Transportation Science, INFORMS, vol. 49(4), pages 784-795, November.
    9. Kedong Yan & Hong Seo Ryoo, 2022. "Graph, clique and facet of boolean logical polytope," Journal of Global Optimization, Springer, vol. 82(4), pages 1015-1052, April.
    10. Camur, Mustafa C. & Sharkey, Thomas C. & Dorsey, Clare & Grabowski, Martha R. & Wallace, William A., 2021. "Optimizing the response for Arctic mass rescue events," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    11. Chrysafis Vogiatzis & Mustafa Can Camur, 2019. "Identification of Essential Proteins Using Induced Stars in Protein–Protein Interaction Networks," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 703-718, October.
    12. Alexander Veremyev & Oleg A. Prokopyev & Eduardo L. Pasiliao, 2019. "Finding Critical Links for Closeness Centrality," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 367-389, April.
    13. Felipe C. Fragoso & Gilberto F. Sousa Filho & Fábio Protti, 2021. "Declawing a graph: polyhedra and Branch-and-Cut algorithms," Journal of Combinatorial Optimization, Springer, vol. 42(1), pages 85-124, July.
    14. Enayaty-Ahangar, Forough & Rainwater, Chase E. & Sharkey, Thomas C., 2019. "A Logic-based Decomposition Approach for Multi-Period Network Interdiction Models," Omega, Elsevier, vol. 87(C), pages 71-85.
    15. Nasirian, Farzaneh & Mahdavi Pajouh, Foad & Balasundaram, Balabhaskar, 2020. "Detecting a most closeness-central clique in complex networks," European Journal of Operational Research, Elsevier, vol. 283(2), pages 461-475.
    16. Rysz, Maciej & Mahdavi Pajouh, Foad & Pasiliao, Eduardo L., 2018. "Finding clique clusters with the highest betweenness centrality," European Journal of Operational Research, Elsevier, vol. 271(1), pages 155-164.
    17. Saeid Rasti & Chrysafis Vogiatzis, 2019. "A survey of computational methods in protein–protein interaction networks," Annals of Operations Research, Springer, vol. 276(1), pages 35-87, May.
    18. Pellerin, Robert & Perrier, Nathalie & Berthaut, François, 2020. "A survey of hybrid metaheuristics for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 280(2), pages 395-416.
    19. Su, Hung-Chung & Kao, Ta-Wei (Daniel) & Linderman, Kevin, 2020. "Where in the supply chain network does ISO 9001 improve firm productivity?," European Journal of Operational Research, Elsevier, vol. 283(2), pages 530-540.
    20. Fischetti, Matteo & Ljubić, Ivana & Sinnl, Markus, 2016. "Benders decomposition without separability: A computational study for capacitated facility location problems," European Journal of Operational Research, Elsevier, vol. 253(3), pages 557-569.
    21. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Meyer, Patrick & Karimi-Mamaghan, Amir Mohammad & Talbi, El-Ghazali, 2022. "Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art," European Journal of Operational Research, Elsevier, vol. 296(2), pages 393-422.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustafa C. Camur & Thomas Sharkey & Chrysafis Vogiatzis, 2022. "The Star Degree Centrality Problem: A Decomposition Approach," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 93-112, January.
    2. Matsypura, Dmytro & Veremyev, Alexander & Pasiliao, Eduardo L. & Prokopyev, Oleg A., 2023. "Finding the most degree-central walks and paths in a graph: Exact and heuristic approaches," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1021-1036.
    3. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.
    4. Ali Tosyali & Jeongsub Choi & Byunghoon Kim & Hoshin Lee & Myong K. Jeong, 2021. "A dynamic graph-based approach to ranking firms for identifying key players using inter-firm transactions," Annals of Operations Research, Springer, vol. 303(1), pages 5-27, August.
    5. Nasirian, Farzaneh & Mahdavi Pajouh, Foad & Balasundaram, Balabhaskar, 2020. "Detecting a most closeness-central clique in complex networks," European Journal of Operational Research, Elsevier, vol. 283(2), pages 461-475.
    6. Simpson, N.C. & Tacheva, Zhasmina & Kao, Ta-Wei, 2023. "Semi-directedness: New network concepts for supply chain research," International Journal of Production Economics, Elsevier, vol. 256(C).
    7. David Roch-Dupré & Carlos Camacho-Gómez & Asunción P. Cucala & Silvia Jiménez-Fernández & Álvaro López-López & Antonio Portilla-Figueras & Ramón R. Pecharromán & Antonio Fernández-Cardador & Sancho Sa, 2021. "Optimal Location and Sizing of Energy Storage Systems in DC-Electrified Railway Lines Using a Coral Reefs Optimization Algorithm with Substrate Layers," Energies, MDPI, vol. 14(16), pages 1-19, August.
    8. Kong, Hanzhang & Kang, Qinma & Li, Wenquan & Liu, Chao & Kang, Yunfan & He, Hong, 2019. "A hybrid iterated carousel greedy algorithm for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    9. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    10. Gong, Hailei & Zhang, Zhi-Hai, 2022. "Benders decomposition for the distributionally robust optimization of pricing and reverse logistics network design in remanufacturing systems," European Journal of Operational Research, Elsevier, vol. 297(2), pages 496-510.
    11. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    12. Neves-Moreira, Fábio & Almada-Lobo, Bernardo & Guimarães, Luís & Amorim, Pedro, 2022. "The multi-product inventory-routing problem with pickups and deliveries: Mitigating fluctuating demand via rolling horizon heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    13. Li, Dongni & Jiang, Yuzhou & Zhang, Jinhui & Cui, Zihua & Yin, Yong, 2023. "An on-line seru scheduling algorithm with proactive waiting considering resource conflicts," European Journal of Operational Research, Elsevier, vol. 309(2), pages 506-515.
    14. Xuanjing Fang & Yanan Du & Yuzhuo Qiu, 2017. "Reducing Carbon Emissions in a Closed-Loop Production Routing Problem with Simultaneous Pickups and Deliveries under Carbon Cap-and-Trade," Sustainability, MDPI, vol. 9(12), pages 1-15, November.
    15. Chen, Zhen-Yu & Fan, Zhi-Ping & Sun, Minghe, 2021. "Tensorial graph learning for link prediction in generalized heterogeneous networks," European Journal of Operational Research, Elsevier, vol. 290(1), pages 219-234.
    16. Changjiu Li & Yong Zhang & Xichao Su & Xinwei Wang, 2022. "An Improved Optimization Algorithm for Aeronautical Maintenance and Repair Task Scheduling Problem," Mathematics, MDPI, vol. 10(20), pages 1-25, October.
    17. Su, Hung-Chung & Kao, Ta-Wei (Daniel) & Linderman, Kevin, 2020. "Where in the supply chain network does ISO 9001 improve firm productivity?," European Journal of Operational Research, Elsevier, vol. 283(2), pages 530-540.
    18. Alvarez, Aldair & Miranda, Pedro & Rohmer, S.U.K., 2022. "Production routing for perishable products," Omega, Elsevier, vol. 111(C).
    19. García-Martínez, C. & Rodriguez, F.J. & Lozano, M., 2014. "Tabu-enhanced iterated greedy algorithm: A case study in the quadratic multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 454-463.
    20. Ragheb Rahmaniani & Shabbir Ahmed & Teodor Gabriel Crainic & Michel Gendreau & Walter Rei, 2020. "The Benders Dual Decomposition Method," Operations Research, INFORMS, vol. 68(3), pages 878-895, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:308:y:2023:i:2:p:525-539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.