IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v309y2023i2p506-515.html
   My bibliography  Save this article

An on-line seru scheduling algorithm with proactive waiting considering resource conflicts

Author

Listed:
  • Li, Dongni
  • Jiang, Yuzhou
  • Zhang, Jinhui
  • Cui, Zihua
  • Yin, Yong

Abstract

Seru production systems (SPSs) with quick responsiveness and high flexibility have been applied in many Asian electronic enterprises. An SPS can quickly respond to market demands with changing varieties and fluctuated volumes. Resource conflicts are used to indicate the requirements for a same worker by more than one seru. This paper studies the on-line seru scheduling problem with resource conflicts in limited work space, which decides serus’ built-up sequence over time and aims at minimizing the makespan. To keep a balance between quick responsiveness and production efficiency in an SPS, a proactive waiting strategy is proposed and a nested algorithm is structured with an external framework and an internal sequencing policy. The external framework handles resource conflicts among serus and divides serus into groups in which resource conflicts do not exist. The internal sequencing policy acts on each group and decides the built-up sequence for serus. The nested algorithm is proved to be 2ρ-competitive with two seru families. Performance of the nested algorithm can be enhanced by improving the internal sequencing policy without changing the external framework, which is conformed by computational experiments. With more seru families, experimental results show that the nested-LPT algorithm can adapt to frequent arrivals of orders, complicated resource conflicts, and fluctuating market demands.

Suggested Citation

  • Li, Dongni & Jiang, Yuzhou & Zhang, Jinhui & Cui, Zihua & Yin, Yong, 2023. "An on-line seru scheduling algorithm with proactive waiting considering resource conflicts," European Journal of Operational Research, Elsevier, vol. 309(2), pages 506-515.
  • Handle: RePEc:eee:ejores:v:309:y:2023:i:2:p:506-515
    DOI: 10.1016/j.ejor.2023.01.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723000413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.01.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Zhe & Gong, Xue & Song, Xiaoling & Yin, Yong & Lev, Benjamin & Chen, Jie, 2022. "A column generation-based exact solution method for seru scheduling problems," Omega, Elsevier, vol. 108(C).
    2. Zhang, Zhe & Song, Xiaoling & Huang, Huijung & Zhou, Xiaoyang & Yin, Yong, 2022. "Logic-based Benders decomposition method for the seru scheduling problem with sequence-dependent setup time and DeJong’s learning effect," European Journal of Operational Research, Elsevier, vol. 297(3), pages 866-877.
    3. Aleda Roth & Jaya Singhal & Kalyan Singhal & Christopher S. Tang, 2016. "Knowledge Creation and Dissemination in Operations and Supply Chain Management," Production and Operations Management, Production and Operations Management Society, vol. 25(9), pages 1473-1488, September.
    4. Yong Yin & Kathryn E. Stecke & Dongni Li, 2018. "The evolution of production systems from Industry 2.0 through Industry 4.0," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 848-861, January.
    5. Nong, Qingqin & Yuan, Jinjiang & Fu, Ruyan & Lin, Lin & Tian, Ji, 2008. "The single-machine parallel-batching on-line scheduling problem with family jobs to minimize makespan," International Journal of Production Economics, Elsevier, vol. 111(2), pages 435-440, February.
    6. Yujing Jiang & Zhe Zhang & Xiaoling Song & Yong Yin, 2021. "Scheduling controllable processing time jobs in seru production system with resource allocation," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(11), pages 2551-2571, December.
    7. Chung-Yee Lee & Reha Uzsoy & Louis A. Martin-Vega, 1992. "Efficient Algorithms for Scheduling Semiconductor Burn-In Operations," Operations Research, INFORMS, vol. 40(4), pages 764-775, August.
    8. Yu, Yang & Tang, Jiafu & Gong, Jun & Yin, Yong & Kaku, Ikou, 2014. "Mathematical analysis and solutions for multi-objective line-cell conversion problem," European Journal of Operational Research, Elsevier, vol. 236(2), pages 774-786.
    9. Martin W. P. Savelsbergh & R. N. Uma & Joel Wein, 2005. "An Experimental Study of LP-Based Approximation Algorithms for Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 123-136, February.
    10. Rongxin Zhan & Jinhui Zhang & Zihua Cui & Jin Peng & Dongni Li & Shi Cheng, 2021. "An Automatic Heuristic Design Approach for Seru Scheduling Problem with Resource Conflicts," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-10, December.
    11. Kathryn E. Stecke & Yong Yin & Ikou Kaku & Yasuhiko Murase, 2012. "Seru: The Organizational Extension of JIT for a Super-Talent Factory," International Journal of Strategic Decision Sciences (IJSDS), IGI Global, vol. 3(1), pages 106-119, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhe Zhang & Xiaoling Song & Huijun Huang & Yong Yin & Benjamin Lev, 2022. "Scheduling problem in seru production system considering DeJong’s learning effect and job splitting," Annals of Operations Research, Springer, vol. 312(2), pages 1119-1141, May.
    2. Zhang, Zhe & Gong, Xue & Song, Xiaoling & Yin, Yong & Lev, Benjamin & Chen, Jie, 2022. "A column generation-based exact solution method for seru scheduling problems," Omega, Elsevier, vol. 108(C).
    3. Ye Wang & Jiafu Tang, 2022. "Optimized skill configuration for the seru production system under an uncertain demand," Annals of Operations Research, Springer, vol. 316(1), pages 445-465, September.
    4. Zhang, Zhe & Song, Xiaoling & Huang, Huijung & Zhou, Xiaoyang & Yin, Yong, 2022. "Logic-based Benders decomposition method for the seru scheduling problem with sequence-dependent setup time and DeJong’s learning effect," European Journal of Operational Research, Elsevier, vol. 297(3), pages 866-877.
    5. Ruyan Fu & Ji Tian & Shisheng Li & Jinjiang Yuan, 2017. "An optimal online algorithm for the parallel-batch scheduling with job processing time compatibilities," Journal of Combinatorial Optimization, Springer, vol. 34(4), pages 1187-1197, November.
    6. Chang Liu & Zhen Li & Jiafu Tang & Xuequn Wang & Ming-Jong Yao, 2022. "How SERU production system improves manufacturing flexibility and firm performance: an empirical study in China," Annals of Operations Research, Springer, vol. 316(1), pages 529-554, September.
    7. Shisheng Li & Jinjiang Yuan, 2010. "Parallel-machine parallel-batching scheduling with family jobs and release dates to minimize makespan," Journal of Combinatorial Optimization, Springer, vol. 19(1), pages 84-93, January.
    8. Zhang, XiaoLi & Liu, ChenGuang & Li, WenJuan & Evans, Steve & Yin, Yong, 2017. "Effects of key enabling technologies for seru production on sustainable performance," Omega, Elsevier, vol. 66(PB), pages 290-307.
    9. Dung-Ying Lin & Tzu-Yun Huang, 2021. "A Hybrid Metaheuristic for the Unrelated Parallel Machine Scheduling Problem," Mathematics, MDPI, vol. 9(7), pages 1-20, April.
    10. Pahlevani, Delaram & Abbasi, Babak & Hearne, John W. & Eberhard, Andrew, 2022. "A cluster-based algorithm for home health care planning: A case study in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    11. Jianxin Fang & Brenda Cheang & Andrew Lim, 2023. "Problems and Solution Methods of Machine Scheduling in Semiconductor Manufacturing Operations: A Survey," Sustainability, MDPI, vol. 15(17), pages 1-44, August.
    12. Kuo-Ching Ying & Yi-Ju Tsai, 2017. "Minimising total cost for training and assigning multiskilled workers in production systems," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2978-2989, May.
    13. Yang Fang & Peihai Liu & Xiwen Lu, 2011. "Optimal on-line algorithms for one batch machine with grouped processing times," Journal of Combinatorial Optimization, Springer, vol. 22(4), pages 509-516, November.
    14. Baptiste, Philippe & Sadykov, Ruslan, 2010. "Time-indexed formulations for scheduling chains on a single machine: An application to airborne radars," European Journal of Operational Research, Elsevier, vol. 203(2), pages 476-483, June.
    15. Melouk, Sharif & Damodaran, Purushothaman & Chang, Ping-Yu, 2004. "Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing," International Journal of Production Economics, Elsevier, vol. 87(2), pages 141-147, January.
    16. Chakhlevitch, Konstantin & Glass, Celia A. & Kellerer, Hans, 2011. "Batch machine production with perishability time windows and limited batch size," European Journal of Operational Research, Elsevier, vol. 210(1), pages 39-47, April.
    17. Guochuan Zhang & Xiaoqiang Cai & C.‐Y Lee & C.K Wong, 2001. "Minimizing makespan on a single batch processing machine with nonidentical job sizes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(3), pages 226-240, April.
    18. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    19. Marić, Josip & Opazo-Basáez, Marco & Vlačić, Božidar & Dabić, Marina, 2023. "Innovation management of three-dimensional printing (3DP) technology: Disclosing insights from existing literature and determining future research streams," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    20. Guoqiang Fan & Qingqin Nong, 2018. "A Coordination Mechanism for a Scheduling Game with Uniform-Batching Machines," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:309:y:2023:i:2:p:506-515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.