IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v296y2022i2p696-716.html
   My bibliography  Save this article

Parametrized Inexact-ADMM based coordination games: A normalized Nash equilibrium approach

Author

Listed:
  • Le Cadre, Hélène
  • Mou, Yuting
  • Höschle, Hanspeter

Abstract

Generalized Nash equilibrium problems are single-shot Nash equilibrium problems, whereby the decisions of all agents are coupled through a shared constraint. Such games are generally challenging to solve as they might give rise to a very large number of solutions. In this context, spanning many equilibria can be interesting to provide meaningful interpretations. In the literature, to compute equilibria, equilibrium problems are classically reformulated as optimization problems, potential games, relaxed and extended games. Applications of these reformulations to an economic dispatch problem under perfect and imperfect competition are provided. Unfortunately, these approaches only enable to describe a very limited part of the equilibrium set. To fill that gap, relying on normalized Nash equilibrium as solution concept, we provide a parametrized decomposition algorithm inspired by the Inexact-ADMM to span many more equilibrium points. Complexifying the setting, we consider an information structure in which the agents can withhold some local information from sensitive data, resulting in private coupling constraints. The convergence of the algorithm and deviations in the players’ strategies at equilibrium are formally analyzed. In addition, the algorithm can be used to coordinate the agents on one specific equilibrium with desirable properties at the system level. The coordination game is formulated as a principal-agent problem, and a procedure is detailed to compute the equilibrium that minimizes a secondary cost function capturing system-level properties. Finally, the Inexact-ADMM is applied to a cellular resource allocation problem, exhibiting better convergence rate than vanilla ADMM, and to compute equilibria that achieve both system-level efficiency and maximum fairness.

Suggested Citation

  • Le Cadre, Hélène & Mou, Yuting & Höschle, Hanspeter, 2022. "Parametrized Inexact-ADMM based coordination games: A normalized Nash equilibrium approach," European Journal of Operational Research, Elsevier, vol. 296(2), pages 696-716.
  • Handle: RePEc:eee:ejores:v:296:y:2022:i:2:p:696-716
    DOI: 10.1016/j.ejor.2021.04.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721003829
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.04.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Le Cadre, Hélène & Bedo, Jean-Sébastien, 2020. "Consensus reaching with heterogeneous user preferences, private input and privacy-preservation output," Operations Research Perspectives, Elsevier, vol. 7(C).
    2. Frederic Murphy & Axel Pierru & Yves Smeers, 2016. "A Tutorial on Building Policy Models as Mixed-Complementarity Problems," Interfaces, INFORMS, vol. 46(6), pages 465-481, December.
    3. Hisao Kameda & Eitan Altman & Corinne Touati & Arnaud Legrand, 2012. "Nash equilibrium based fairness," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(1), pages 43-65, August.
    4. Jayash Koshal & Angelia Nedić & Uday V. Shanbhag, 2016. "Distributed Algorithms for Aggregative Games on Graphs," Operations Research, INFORMS, vol. 64(3), pages 680-704, June.
    5. Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
    6. Egging-Bratseth, Ruud & Baltensperger, Tobias & Tomasgard, Asgeir, 2020. "Solving oligopolistic equilibrium problems with convex optimization," European Journal of Operational Research, Elsevier, vol. 284(1), pages 44-52.
    7. Francisco Facchinei & Veronica Piccialli & Marco Sciandrone, 2011. "Decomposition algorithms for generalized potential games," Computational Optimization and Applications, Springer, vol. 50(2), pages 237-262, October.
    8. Koichi Nabetani & Paul Tseng & Masao Fukushima, 2011. "Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints," Computational Optimization and Applications, Springer, vol. 48(3), pages 423-452, April.
    9. Dirk P. Kroese & Sergey Porotsky & Reuven Y. Rubinstein, 2006. "The Cross-Entropy Method for Continuous Multi-Extremal Optimization," Methodology and Computing in Applied Probability, Springer, vol. 8(3), pages 383-407, September.
    10. RALPH, Daniel & SMEERS, Yves, 2015. "Risk trading and endogenous probabilities in investment equilibria," LIDAM Reprints CORE 2727, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. EHRENMANN, Andreas & SMEERS, Yves, 2013. "Risk adjusted discounted cash flows in capacity expansion models," LIDAM Reprints CORE 2550, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hélène Le Cadre & Yuting Mou & Hanspeter Höschle, 2020. "Parametrized Inexact-ADMM to Span the Set of Generalized Nash Equilibria: A Normalized Equilibrium Approach," Working Papers hal-02925005, HAL.
    2. Migot, Tangi & Cojocaru, Monica-G., 2020. "A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1136-1147.
    3. Jiawang Nie & Xindong Tang & Lingling Xu, 2021. "The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials," Computational Optimization and Applications, Springer, vol. 78(2), pages 529-557, March.
    4. Sreekumaran, Harikrishnan & Hota, Ashish R. & Liu, Andrew L. & Uhan, Nelson A. & Sundaram, Shreyas, 2021. "Equilibrium strategies for multiple interdictors on a common network," European Journal of Operational Research, Elsevier, vol. 288(2), pages 523-538.
    5. Letícia Becher & Damián Fernández & Alberto Ramos, 2023. "A trust-region LP-Newton method for constrained nonsmooth equations under Hölder metric subregularity," Computational Optimization and Applications, Springer, vol. 86(2), pages 711-743, November.
    6. Alexey Izmailov & Mikhail Solodov, 2014. "On error bounds and Newton-type methods for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 201-218, October.
    7. Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
    8. Axel Dreves, 2019. "An algorithm for equilibrium selection in generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 73(3), pages 821-837, July.
    9. Le Cadre, Hélène & Jacquot, Paulin & Wan, Cheng & Alasseur, Clémence, 2020. "Peer-to-peer electricity market analysis: From variational to Generalized Nash Equilibrium," European Journal of Operational Research, Elsevier, vol. 282(2), pages 753-771.
    10. Jinlong Lei & Uday V. Shanbhag, 2020. "Asynchronous Schemes for Stochastic and Misspecified Potential Games and Nonconvex Optimization," Operations Research, INFORMS, vol. 68(6), pages 1742-1766, November.
    11. Durand-Lasserve, Olivier & Pierru, Axel, 2021. "Modeling world oil market questions: An economic perspective," Energy Policy, Elsevier, vol. 159(C).
    12. Huppmann, Daniel & Siddiqui, Sauleh, 2018. "An exact solution method for binary equilibrium problems with compensation and the power market uplift problem," European Journal of Operational Research, Elsevier, vol. 266(2), pages 622-638.
    13. Jacquot, Paulin & Wan, Cheng, 2022. "Nonatomic aggregative games with infinitely many types," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1149-1165.
    14. Francisco Facchinei & Jong-Shi Pang & Gesualdo Scutari, 2014. "Non-cooperative games with minmax objectives," Computational Optimization and Applications, Springer, vol. 59(1), pages 85-112, October.
    15. Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.
    16. Ambrosius, Mirjam & Egerer, Jonas & Grimm, Veronika & van der Weijde, Adriaan H., 2022. "Risk aversion in multilevel electricity market models with different congestion pricing regimes," Energy Economics, Elsevier, vol. 105(C).
    17. Giancarlo Bigi & Mauro Passacantando, 2016. "Gap functions for quasi-equilibria," Journal of Global Optimization, Springer, vol. 66(4), pages 791-810, December.
    18. Axel Dreves, 2018. "How to Select a Solution in Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 973-997, September.
    19. Baasansuren Jadamba & Fabio Raciti, 2015. "On the Modeling of Some Environmental Games with Uncertain Data," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 959-968, December.
    20. Giorgia Oggioni and Yves Smeers, 2012. "Degrees of Coordination in Market Coupling and Counter-Trading," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:296:y:2022:i:2:p:696-716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.