IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v285y2020i2p513-537.html
   My bibliography  Save this article

A learning-based metaheuristic for a multi-objective agile inspection planning model under uncertainty

Author

Listed:
  • Karimi-Mamaghan, Maryam
  • Mohammadi, Mehrdad
  • Jula, Payman
  • Pirayesh, Amir
  • Ahmadi, Hadi

Abstract

In this paper, we present an agile integrated inspection-operation planning model wherein inspection actions are planned alongside the machining operations to make the production process agile. Such an agile integrated plan can respond quickly to inspection-machining needs while still controlling costs and quality. A tri-objective mixed-integer nonlinear programming (TMINLP) model is developed for planning the integrated process in a serial multi-stage production (MSP) system. This model addresses several inter-related decisions; (1) what is the most appropriate inspection process for a quality characteristic, (2) at which stage the inspection of these quality characteristics should be performed, (3) how these inspections should be performed, (4) which inspection tools should be used, and (5) which machine should operate on products. The three objectives are: (1) minimizing the total manufacturing cost, (2) minimizing the number of nonconforming products shipped, and (3) minimizing the total manufacturing time for each product. We also address the uncertainty of manufacturing parameters and equipment disruptions. To solve the model, a novel learning-based metaheuristic is developed based on Multi-Objective Differential Evolution (MODE) algorithm, k-Means clustering method, and an Iterated Local Search (ILS) algorithm. The proposed learning-based metaheuristic algorithm is then integrated with the Taguchi Loss Function and Monte Carlo methods to address the input parameters’ uncertainty. The proposed model and solution algorithm are validated through a set of experiments against optimal solutions, and benchmarked against four existing well-known approaches, i.e. NSGA-II, MODE and two learning-based metaheuristics. The proposed approach is applied to a real industrial case and insights are provided.

Suggested Citation

  • Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Jula, Payman & Pirayesh, Amir & Ahmadi, Hadi, 2020. "A learning-based metaheuristic for a multi-objective agile inspection planning model under uncertainty," European Journal of Operational Research, Elsevier, vol. 285(2), pages 513-537.
  • Handle: RePEc:eee:ejores:v:285:y:2020:i:2:p:513-537
    DOI: 10.1016/j.ejor.2020.01.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720300990
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.01.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mosadegh, H. & Fatemi Ghomi, S.M.T. & Süer, G.A., 2020. "Stochastic mixed-model assembly line sequencing problem: Mathematical modeling and Q-learning based simulated annealing hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 282(2), pages 530-544.
    2. Hulett, Maria & Damodaran, Purushothaman, 2011. "Analytical approximations to predict performance measures of markovian type manufacturing systems with job failures and parallel processing," European Journal of Operational Research, Elsevier, vol. 212(1), pages 89-99, July.
    3. Hanne, Thomas & Nickel, Stefan, 2005. "A multiobjective evolutionary algorithm for scheduling and inspection planning in software development projects," European Journal of Operational Research, Elsevier, vol. 167(3), pages 663-678, December.
    4. Baykal-Gürsoy, M. & Xiao, W. & Ozbay, K., 2009. "Modeling traffic flow interrupted by incidents," European Journal of Operational Research, Elsevier, vol. 195(1), pages 127-138, May.
    5. Mohammadi, Mehrdad & Jula, Payman & Tavakkoli-Moghaddam, Reza, 2019. "Reliable single-allocation hub location problem with disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 90-120.
    6. Kraus, Mathias & Feuerriegel, Stefan & Oztekin, Asil, 2020. "Deep learning in business analytics and operations research: Models, applications and managerial implications," European Journal of Operational Research, Elsevier, vol. 281(3), pages 628-641.
    7. Linnéusson, Gary & Ng, Amos H.C. & Aslam, Tehseen, 2020. "A hybrid simulation-based optimization framework supporting strategic maintenance development to improve production performance," European Journal of Operational Research, Elsevier, vol. 281(2), pages 402-414.
    8. Mohammadi, M. & Dehbari, S. & Vahdani, Behnam, 2014. "Design of a bi-objective reliable healthcare network with finite capacity queue under service covering uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 15-41.
    9. Deutsch, Yael & Goldberg, Noam & Perlman, Yael, 2019. "Incorporating monitoring technology and on-site inspections into an n-person inspection game," European Journal of Operational Research, Elsevier, vol. 274(2), pages 627-637.
    10. Scarf, P.A. & Cavalcante, C.A.V. & Lopes, R.S., 2019. "Delay-time modelling of a critical system subject to random inspections," European Journal of Operational Research, Elsevier, vol. 278(3), pages 772-782.
    11. Van Volsem, Sofie & Dullaert, Wout & Van Landeghem, Hendrik, 2007. "An Evolutionary Algorithm and discrete event simulation for optimizing inspection strategies for multi-stage processes," European Journal of Operational Research, Elsevier, vol. 179(3), pages 621-633, June.
    12. M. Mohammadi & J.-Y. Dantan & A. Siadat & R. Tavakkoli-Moghaddam, 2018. "A bi-objective robust inspection planning model in a multi-stage serial production system," International Journal of Production Research, Taylor & Francis Journals, vol. 56(4), pages 1432-1457, February.
    13. Mohammadi, M. & Torabi, S.A. & Tavakkoli-Moghaddam, R., 2014. "Sustainable hub location under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 89-115.
    14. Mohammadi, Mehrdad & Jula, Payman & Tavakkoli-Moghaddam, Reza, 2017. "Design of a reliable multi-modal multi-commodity model for hazardous materials transportation under uncertainty," European Journal of Operational Research, Elsevier, vol. 257(3), pages 792-809.
    15. Ali Azadeh & Mohamad Sadegh Sangari, 2010. "A metaheuristic method for optimising inspection strategies in serial multistage processes," International Journal of Productivity and Quality Management, Inderscience Enterprises Ltd, vol. 6(3), pages 289-303.
    16. Vahdani, Behnam & Mohammadi, M., 2015. "A bi-objective interval-stochastic robust optimization model for designing closed loop supply chain network with multi-priority queuing system," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 67-87.
    17. Zahiri, B. & Tavakkoli-Moghaddam, R. & Mohammadi, M. & Jula, P., 2014. "Multi-objective design of an organ transplant network under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 101-124.
    18. Mehrdad Mohammadi & Ali Siadat & Jean-Yves Dantan & Reza Tavakkoli-Moghaddam, 2015. "Mathematical modelling of a robust inspection process plan: Taguchi and Monte Carlo methods," International Journal of Production Research, Taylor & Francis Journals, vol. 53(7), pages 2202-2224, April.
    19. Cruz, F.R.B. & Van Woensel, T. & Smith, J. MacGregor, 2010. "Buffer and throughput trade-offs in M/G/1/K queueing networks: A bi-criteria approach," International Journal of Production Economics, Elsevier, vol. 125(2), pages 224-234, June.
    20. Zahiri, Behzad & Zhuang, Jun & Mohammadi, Mehrdad, 2017. "Toward an integrated sustainable-resilient supply chain: A pharmaceutical case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 109-142.
    21. Michal Penn & Tal Raviv, 2007. "Optimizing the quality control station configuration," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(3), pages 301-314, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammadi, Mehrdad & Dehghan, Milad & Pirayesh, Amir & Dolgui, Alexandre, 2022. "Bi‐objective optimization of a stochastic resilient vaccine distribution network in the context of the COVID‐19 pandemic," Omega, Elsevier, vol. 113(C).
    2. Mohri, Seyed Sina & Mohammadi, Mehrdad & Gendreau, Michel & Pirayesh, Amir & Ghasemaghaei, Ali & Salehi, Vahid, 2022. "Hazardous material transportation problems: A comprehensive overview of models and solution approaches," European Journal of Operational Research, Elsevier, vol. 302(1), pages 1-38.
    3. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Meyer, Patrick & Karimi-Mamaghan, Amir Mohammad & Talbi, El-Ghazali, 2022. "Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art," European Journal of Operational Research, Elsevier, vol. 296(2), pages 393-422.
    4. M. Masanta & B. C. Giri, 2022. "A closed-loop supply chain model with learning effect, random return and imperfect inspection under price- and quality-dependent demand," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 1094-1115, September.
    5. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Pasdeloup, Bastien & Meyer, Patrick, 2023. "Learning to select operators in meta-heuristics: An integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1296-1330.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadi, Mehrdad & Jula, Payman & Tavakkoli-Moghaddam, Reza, 2019. "Reliable single-allocation hub location problem with disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 90-120.
    2. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Pirayesh, Amir & Karimi-Mamaghan, Amir Mohammad & Irani, Hassan, 2020. "Hub-and-spoke network design under congestion: A learning based metaheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    3. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    4. Mohammadi, Mehrdad & Jula, Payman & Tavakkoli-Moghaddam, Reza, 2017. "Design of a reliable multi-modal multi-commodity model for hazardous materials transportation under uncertainty," European Journal of Operational Research, Elsevier, vol. 257(3), pages 792-809.
    5. Zahiri, Behzad & Zhuang, Jun & Mohammadi, Mehrdad, 2017. "Toward an integrated sustainable-resilient supply chain: A pharmaceutical case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 109-142.
    6. Mohri, Seyed Sina & Mohammadi, Mehrdad & Gendreau, Michel & Pirayesh, Amir & Ghasemaghaei, Ali & Salehi, Vahid, 2022. "Hazardous material transportation problems: A comprehensive overview of models and solution approaches," European Journal of Operational Research, Elsevier, vol. 302(1), pages 1-38.
    7. Wu, Kan & McGinnis, Leon, 2012. "Performance evaluation for general queueing networks in manufacturing systems: Characterizing the trade-off between queue time and utilization," European Journal of Operational Research, Elsevier, vol. 221(2), pages 328-339.
    8. Milad Mohammadi & Alibakhsh Nikzad, 2023. "Sustainable and reliable closed-loop supply chain network design during pandemic outbreaks and disruptions," Operations Management Research, Springer, vol. 16(2), pages 969-991, June.
    9. Vahdani, Behnam & Veysmoradi, D. & Mousavi, S.M. & Amiri, M., 2022. "Planning for relief distribution, victim evacuation, redistricting and service sharing under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    10. Si, Guojin & Xia, Tangbin & Gebraeel, Nagi & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2022. "A reliability-and-cost-based framework to optimize maintenance planning and diverse-skilled technician routing for geographically distributed systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    11. Zahiri, Behzad & Suresh, Nallan C., 2021. "Hub network design for hazardous-materials transportation under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    12. Firoozeh Kaveh & Reza Tavakkoli-Moghaddam & Chefi Triki & Yaser Rahimi & Amin Jamili, 2021. "A new bi-objective model of the urban public transportation hub network design under uncertainty," Annals of Operations Research, Springer, vol. 296(1), pages 131-162, January.
    13. Salimi, F. & Vahdani, Behnam, 2018. "Designing a bio-fuel network considering links reliability and risk-pooling effect in bio-refineries," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 96-107.
    14. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Meyer, Patrick & Karimi-Mamaghan, Amir Mohammad & Talbi, El-Ghazali, 2022. "Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art," European Journal of Operational Research, Elsevier, vol. 296(2), pages 393-422.
    15. Esmizadeh, Yalda & Bashiri, Mahdi & Jahani, Hamed & Almada-Lobo, Bernardo, 2021. "Cold chain management in hierarchical operational hub networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    16. Bütün, Cihan & Petrovic, Sanja & Muyldermans, Luc, 2021. "The capacitated directed cycle hub location and routing problem under congestion," European Journal of Operational Research, Elsevier, vol. 292(2), pages 714-734.
    17. Marc Janschekowitz & Gita Taherkhani & Sibel A. Alumur & Stefan Nickel, 2023. "An alternative approach to address uncertainty in hub location," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(2), pages 359-393, June.
    18. Chen, Dongxu & Yang, Zhongzhen, 2018. "Systematic optimization of port clusters along the Maritime Silk Road in the context of industry transfer and production capacity constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 174-189.
    19. Laureano F. Escudero & Juan F. Monge, 2021. "On Multistage Multiscale Stochastic Capacitated Multiple Allocation Hub Network Expansion Planning," Mathematics, MDPI, vol. 9(24), pages 1-39, December.
    20. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Pasdeloup, Bastien & Meyer, Patrick, 2023. "Learning to select operators in meta-heuristics: An integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1296-1330.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:285:y:2020:i:2:p:513-537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.