IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v284y2020i1p164-175.html
   My bibliography  Save this article

Operational level planning of a multi-item two-echelon spare parts inventory system with reactive and proactive interventions

Author

Listed:
  • Topan, E.
  • van der Heijden, M.C.

Abstract

In this paper, we investigate operational spare parts planning in a multi-item two-echelon distribution system, taking into account real-time supply information in the system. We consider a broad range of operational interventions, either reactive (to solve a shortage) or proactive (to avoid a shortage). These interventions particularly include lateral transshipments between warehouses (local warehouses), emergency shipments from the depot (central warehouse), and doing nothing and waiting for pipeline inventory. We propose an integrated approach to determine the optimal timing and size of each intervention type to minimize the total downtime and shipment costs associated with interventions. Data from a leading original equipment manufacturer of high-tech systems is used to test the performance of our approach. We find that our integrated approach reduces total downtime considerably with a very limited increase in total shipment costs. Proactive emergency shipments contribute most to downtime reduction. The benefit of our approach is higher for high demand parts. Allowing complete pooling between warehouses increases downtime savings and usage of proactive emergency shipments even further. Our approach is efficient enough to solve practical size problems. We also propose a heuristic based on a greedy algorithm, which is well known in the literature. We find that the gap between the heuristic and the optimal solution is relatively large.

Suggested Citation

  • Topan, E. & van der Heijden, M.C., 2020. "Operational level planning of a multi-item two-echelon spare parts inventory system with reactive and proactive interventions," European Journal of Operational Research, Elsevier, vol. 284(1), pages 164-175.
  • Handle: RePEc:eee:ejores:v:284:y:2020:i:1:p:164-175
    DOI: 10.1016/j.ejor.2019.12.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171931046X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.12.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruce Hoadley & Daniel P. Heyman, 1977. "A two‐echelon inventory model with purchases, dispositions, shipments, returns and transshipments," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 24(1), pages 1-19, March.
    2. Johan Marklund & Kaj Rosling, 2012. "Lower Bounds and Heuristics for Supply Chain Stock Allocation," Operations Research, INFORMS, vol. 60(1), pages 92-105, February.
    3. Kathryn E. Caggiano & John A. Muckstadt & James A. Rappold, 2006. "Integrated Real-Time Capacity and Inventory Allocation for Reparable Service Parts in a Two-Echelon Supply System," Manufacturing & Service Operations Management, INFORMS, vol. 8(3), pages 292-319, August.
    4. Geert-Jan van Houtum & Bram Kranenburg, 2015. "Spare Parts Inventory Control under System Availability Constraints," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4899-7609-3, December.
    5. Paterson, Colin & Kiesmüller, Gudrun & Teunter, Ruud & Glazebrook, Kevin, 2011. "Inventory models with lateral transshipments: A review," European Journal of Operational Research, Elsevier, vol. 210(2), pages 125-136, April.
    6. Topan, E. & Eruguz, A.S. & Ma, W. & van der Heijden, M.C. & Dekker, R., 2020. "A review of operational spare parts service logistics in service control towers," European Journal of Operational Research, Elsevier, vol. 282(2), pages 401-414.
    7. Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
    8. Senthil Veeraraghavan & Alan Scheller-Wolf, 2008. "Now or Later: A Simple Policy for Effective Dual Sourcing in Capacitated Systems," Operations Research, INFORMS, vol. 56(4), pages 850-864, August.
    9. Joachim Arts & Rob Basten & Geert-Jan Van Houtum, 2016. "Repairable Stocking and Expediting in a Fluctuating Demand Environment: Optimal Policy and Heuristics," Operations Research, INFORMS, vol. 64(6), pages 1285-1301, December.
    10. Topan, Engin & Bayındır, Z. Pelin & Tan, Tarkan, 2017. "Heuristics for multi-item two-echelon spare parts inventory control subject to aggregate and individual service measures," European Journal of Operational Research, Elsevier, vol. 256(1), pages 126-138.
    11. van der Heijden, M. C. & Diks, E. B. & de Kok, A. G., 1997. "Stock allocation in general multi-echelon distribution systems with (R, S) order-up-to-policies," International Journal of Production Economics, Elsevier, vol. 49(2), pages 157-174, April.
    12. Christian Howard & Johan Marklund & Tarkan Tan & Ingrid Reijnen, 2015. "Inventory Control in a Spare Parts Distribution System with Emergency Stocks and Pipeline Information," Manufacturing & Service Operations Management, INFORMS, vol. 17(2), pages 142-156, May.
    13. Tiemessen, H.G.H. & Fleischmann, M. & van Houtum, G.J. & van Nunen, J.A.E.E. & Pratsini, E., 2013. "Dynamic demand fulfillment in spare parts networks with multiple customer classes," European Journal of Operational Research, Elsevier, vol. 228(2), pages 367-380.
    14. Jing-Sheng Song & Paul Zipkin, 2009. "Inventories with Multiple Supply Sources and Networks of Queues with Overflow Bypasses," Management Science, INFORMS, vol. 55(3), pages 362-372, March.
    15. Kranenburg, A.A. & van Houtum, G.J., 2009. "A new partial pooling structure for spare parts networks," European Journal of Operational Research, Elsevier, vol. 199(3), pages 908-921, December.
    16. Paterson, Colin & Teunter, Ruud & Glazebrook, Kevin, 2012. "Enhanced lateral transshipments in a multi-location inventory system," European Journal of Operational Research, Elsevier, vol. 221(2), pages 317-327.
    17. Kevin Glazebrook & Colin Paterson & Sandra Rauscher & Thomas Archibald, 2015. "Benefits of Hybrid Lateral Transshipments in Multi-Item Inventory Systems under Periodic Replenishment," Production and Operations Management, Production and Operations Management Society, vol. 24(2), pages 311-324, February.
    18. Jovan Grahovac & Amiya Chakravarty, 2001. "Sharing and Lateral Transshipment of Inventory in a Supply Chain with Expensive Low-Demand Items," Management Science, INFORMS, vol. 47(4), pages 579-594, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Svoboda, Josef & Minner, Stefan & Yao, Man, 2021. "Typology and literature review on multiple supplier inventory control models," European Journal of Operational Research, Elsevier, vol. 293(1), pages 1-23.
    2. Somarin, Aghil Rezaei & Sharma, Pankaj & Tiwari, Sunil & Chen, Songlin, 2023. "Stock reallocation policy for repairable service parts in case of supply disruptions due to extreme weather events," International Journal of Production Economics, Elsevier, vol. 256(C).
    3. Saha, Kushal & Bhattacharya, Subir, 2021. "‘Buy online and pick up in-store’: Implications for the store inventory," European Journal of Operational Research, Elsevier, vol. 294(3), pages 906-921.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Topan, E. & Eruguz, A.S. & Ma, W. & van der Heijden, M.C. & Dekker, R., 2020. "A review of operational spare parts service logistics in service control towers," European Journal of Operational Research, Elsevier, vol. 282(2), pages 401-414.
    2. Gerrits, B. & Topan, E. & van der Heijden, M.C., 2022. "Operational planning in service control towers – heuristics and case study," European Journal of Operational Research, Elsevier, vol. 302(3), pages 983-998.
    3. Christian Howard & Johan Marklund & Tarkan Tan & Ingrid Reijnen, 2015. "Inventory Control in a Spare Parts Distribution System with Emergency Stocks and Pipeline Information," Manufacturing & Service Operations Management, INFORMS, vol. 17(2), pages 142-156, May.
    4. van Wijk, A.C.C. & Adan, I.J.B.F. & van Houtum, G.J., 2019. "Optimal lateral transshipment policies for a two location inventory problem with multiple demand classes," European Journal of Operational Research, Elsevier, vol. 272(2), pages 481-495.
    5. van Wingerden, E. & Tan, T. & Van Houtum, G.J., 2019. "The impact of an emergency warehouse in a two-echelon spare parts network," European Journal of Operational Research, Elsevier, vol. 276(3), pages 983-997.
    6. Svoboda, Josef & Minner, Stefan & Yao, Man, 2021. "Typology and literature review on multiple supplier inventory control models," European Journal of Operational Research, Elsevier, vol. 293(1), pages 1-23.
    7. Christiane B. Haubitz & Ulrich W. Thonemann, 2021. "How to Change a Running System—Controlling the Transition to Optimized Spare Parts Inventory Policies," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1386-1405, May.
    8. García-Benito, Juan Carlos & Martín-Peña, María-Luz, 2021. "A redistribution model with minimum backorders of spare parts: A proposal for the defence sector," European Journal of Operational Research, Elsevier, vol. 291(1), pages 178-193.
    9. Zümbül Atan & Lawrence V. Snyder & George R. Wilson, 2018. "Transshipment policies for systems with multiple retailers and two demand classes," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 159-186, January.
    10. Cem Deniz Caglar Bozkir & O. Erhun Kundakcioglu & Andrea C. Henry, 2022. "Hospital service levels during drug shortages: Stocking and transshipment policies for pharmaceutical inventory," Journal of Global Optimization, Springer, vol. 83(3), pages 565-584, July.
    11. N. Knofius & M. C. Heijden & A. Sleptchenko & W. H. M. Zijm, 2021. "Improving effectiveness of spare parts supply by additive manufacturing as dual sourcing option," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 189-221, March.
    12. Dijkstra, Arjan S. & Van der Heide, Gerlach & Roodbergen, Kees Jan, 2019. "Transshipments of cross-channel returned products," International Journal of Production Economics, Elsevier, vol. 209(C), pages 70-77.
    13. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    14. Johansson, Lina & Olsson, Fredrik, 2018. "Age-based inventory control in a multi-echelon system with emergency replenishments," European Journal of Operational Research, Elsevier, vol. 265(3), pages 951-961.
    15. Bram Westerweel & Rob Basten & Jelmar den Boer & Geert‐Jan van Houtum, 2021. "Printing Spare Parts at Remote Locations: Fulfilling the Promise of Additive Manufacturing," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1615-1632, June.
    16. Frank Karsten & Marco Slikker & Geert‐Jan van Houtum, 2012. "Inventory pooling games for expensive, low‐demand spare parts," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(5), pages 311-324, August.
    17. Hekimoğlu, Mustafa & Scheller-Wolf, Alan, 2023. "Dual sourcing models with stock-out dependent substitution," European Journal of Operational Research, Elsevier, vol. 311(2), pages 472-485.
    18. Meissner, Joern & Senicheva, Olga V., 2018. "Approximate dynamic programming for lateral transshipment problems in multi-location inventory systems," European Journal of Operational Research, Elsevier, vol. 265(1), pages 49-64.
    19. Barron, Yonit, 2022. "The continuous (S,s,Se) inventory model with dual sourcing and emergency orders," European Journal of Operational Research, Elsevier, vol. 301(1), pages 18-38.
    20. Satır, Benhür & Savasaneril, Secil & Serin, Yasemin, 2012. "Pooling through lateral transshipments in service parts systems," European Journal of Operational Research, Elsevier, vol. 220(2), pages 370-377.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:284:y:2020:i:1:p:164-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.