IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v47y2001i4p579-594.html
   My bibliography  Save this article

Sharing and Lateral Transshipment of Inventory in a Supply Chain with Expensive Low-Demand Items

Author

Listed:
  • Jovan Grahovac

    (A. B. Freeman School of Business, Tulane University, New Orleans, Louisiana 70118-5669)

  • Amiya Chakravarty

    (A. B. Freeman School of Business, Tulane University, New Orleans, Louisiana 70118-5669)

Abstract

The emergence of carriers that deliver items to geographically dispersed destinations quickly and at a reasonable cost, combined with the low cost of sharing information through networked databases, has opened up new opportunities to better manage inventory. We investigate these benefits in the context of a supply chain in which a manufacturer supplies expensive, low-demand items to vertically integrated or autonomous retailers via one central depot. The manufacturer's lead time is assumed to be due to the geographical distance from the market or a combination of low volumes, high variety, and inflexible production processes. We formulate and solve an appropriate mathematical model based on one-for-one inventory policies in which a replenishment order is placed as soon as the customer withdraws an item. We find that sharing and transshipment of items often, but not always, reduces the overall costs of holding, shipping, and waiting for inventory. Unexpectedly, these cost reductions are sometimes achieved through increasing overall inventory levels in the supply chain. Finally, while sharing of inventory typically benefits all the participants in decentralized supply chains, this is not necessarily the case---sharing can hurt the distributor or individual retailers, regardless of their relative power in the supply chain.

Suggested Citation

  • Jovan Grahovac & Amiya Chakravarty, 2001. "Sharing and Lateral Transshipment of Inventory in a Supply Chain with Expensive Low-Demand Items," Management Science, INFORMS, vol. 47(4), pages 579-594, April.
  • Handle: RePEc:inm:ormnsc:v:47:y:2001:i:4:p:579-594
    DOI: 10.1287/mnsc.47.4.579.9826
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.47.4.579.9826
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.47.4.579.9826?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. George J. Feeney & Craig C. Sherbrooke, 1966. "Correction to "(s - 1, s) Inventory Policy Under Compound Poisson Demand"," Management Science, INFORMS, vol. 12(11), pages 908-908, July.
    2. R. M. Simon, 1971. "Stationary Properties of a Two-Echelon Inventory Model for Low Demand Items," Operations Research, INFORMS, vol. 19(3), pages 761-773, June.
    3. Stephen C. Graves, 1985. "A Multi-Echelon Inventory Model for a Repairable Item with One-for-One Replenishment," Management Science, INFORMS, vol. 31(10), pages 1247-1256, October.
    4. John A. Muckstadt & L. Joseph Thomas, 1980. "Are Multi-Echelon Inventory Methods Worth Implementing in Systems with Low-Demand-Rate Items?," Management Science, INFORMS, vol. 26(5), pages 483-494, May.
    5. G. J. Feeney & C. C. Sherbrooke, 1966. "The (S - 1, S) Inventory Policy Under Compound Poisson Demand," Management Science, INFORMS, vol. 12(5), pages 391-411, January.
    6. Craig C. Sherbrooke, 1968. "Metric: A Multi-Echelon Technique for Recoverable Item Control," Operations Research, INFORMS, vol. 16(1), pages 122-141, February.
    7. Warren H. Hausman & Nesim K. Erkip, 1994. "Multi-Echelon vs. Single-Echelon Inventory Control Policies for Low-Demand Items," Management Science, INFORMS, vol. 40(5), pages 597-602, May.
    8. Antony Svoronos & Paul Zipkin, 1991. "Evaluation of One-for-One Replenishment Policies for Multiechelon Inventory Systems," Management Science, INFORMS, vol. 37(1), pages 68-83, January.
    9. Kamran Moinzadeh & Prabhu K. Aggarwal, 1997. "An Information Based Multiechelon Inventory System with Emergency Orders," Operations Research, INFORMS, vol. 45(5), pages 694-701, October.
    10. Hau L. Lee, 1987. "A Multi-Echelon Inventory Model for Repairable Items with Emergency Lateral Transshipments," Management Science, INFORMS, vol. 33(10), pages 1302-1316, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    2. Kathryn E. Caggiano & John A. Muckstadt & James A. Rappold, 2006. "Integrated Real-Time Capacity and Inventory Allocation for Reparable Service Parts in a Two-Echelon Supply System," Manufacturing & Service Operations Management, INFORMS, vol. 8(3), pages 292-319, August.
    3. Vinayak Deshpande & Morris A. Cohen & Karen Donohue, 2003. "An Empirical Study of Service Differentiation for Weapon System Service Parts," Operations Research, INFORMS, vol. 51(4), pages 518-530, August.
    4. Izack Cohen & Morris A. Cohen & Elad Landau, 2017. "On sourcing and stocking policies in a two-echelon, multiple location, repairable parts supply chain," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 617-629, June.
    5. Yunzeng Wang & Morris A. Cohen & Yu-Sheng Zheng, 2000. "A Two-Echelon Repairable Inventory System with Stocking-Center-Dependent Depot Replenishment Lead Times," Management Science, INFORMS, vol. 46(11), pages 1441-1453, November.
    6. Lina Johansson & Fredrik Olsson, 2017. "Quantifying sustainable control of inventory systems with non-linear backorder costs," Annals of Operations Research, Springer, vol. 259(1), pages 217-239, December.
    7. Prak, Derk & Teunter, Rudolf & Babai, M. Z. & Syntetos, A. A. & Boylan, D, 2018. "Forecasting and Inventory Control with Compound Poisson Demand Using Periodic Demand Data," Research Report 2018010, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    8. Sheikh-Zadeh, Alireza & Rossetti, Manuel D. & Scott, Marc A., 2021. "Performance-based inventory classification methods for large-Scale multi-echelon replenishment systems," Omega, Elsevier, vol. 101(C).
    9. Guide, V. Daniel R. & Srivastava, Rajesh, 1997. "Repairable inventory theory: Models and applications," European Journal of Operational Research, Elsevier, vol. 102(1), pages 1-20, October.
    10. Gérard P. Cachon, 2001. "Stock Wars: Inventory Competition in a Two-Echelon Supply Chain with Multiple Retailers," Operations Research, INFORMS, vol. 49(5), pages 658-674, October.
    11. Diks, E. B. & de Kok, A. G. & Lagodimos, A. G., 1996. "Multi-echelon systems: A service measure perspective," European Journal of Operational Research, Elsevier, vol. 95(2), pages 241-263, December.
    12. Erhun Özkan & Geert-Jan Houtum & Yasemin Serin, 2015. "A new approximate evaluation method for two-echelon inventory systems with emergency shipments," Annals of Operations Research, Springer, vol. 224(1), pages 147-169, January.
    13. Kutanoglu, Erhan & Mahajan, Mohit, 2009. "An inventory sharing and allocation method for a multi-location service parts logistics network with time-based service levels," European Journal of Operational Research, Elsevier, vol. 194(3), pages 728-742, May.
    14. Gérard P. Cachon, 2001. "Exact Evaluation of Batch-Ordering Inventory Policies in Two-Echelon Supply Chains with Periodic Review," Operations Research, INFORMS, vol. 49(1), pages 79-98, February.
    15. Vinayak Deshpande & Ananth V. Iyer & Richard Cho, 2006. "Efficient Supply Chain Management at the U.S. Coast Guard Using Part-Age Dependent Supply Replenishment Policies," Operations Research, INFORMS, vol. 54(6), pages 1028-1040, December.
    16. Rezaei Somarin, Aghil & Chen, Songlin & Asian, Sobhan & Wang, David Z.W., 2017. "A heuristic stock allocation rule for repairable service parts," International Journal of Production Economics, Elsevier, vol. 184(C), pages 131-140.
    17. Patrik Alfredsson & Jos Verrijdt, 1999. "Modeling Emergency Supply Flexibility in a Two-Echelon Inventory System," Management Science, INFORMS, vol. 45(10), pages 1416-1431, October.
    18. Alfredsson, Patrik, 1997. "Optimization of multi-echelon repairable item inventory systems with simultaneous location of repair facilities," European Journal of Operational Research, Elsevier, vol. 99(3), pages 584-595, June.
    19. Chew, E. P. & Johnson, L. A., 1996. "Service level approximations for multiechelon inventory systems," European Journal of Operational Research, Elsevier, vol. 91(3), pages 440-455, June.
    20. Frank Schneider & Ulrich W. Thonemann & Diego Klabjan, 2018. "Optimization of Battery Charging and Purchasing at Electric Vehicle Battery Swap Stations," Transportation Science, INFORMS, vol. 52(5), pages 1211-1234, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:47:y:2001:i:4:p:579-594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.