IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v278y2019i1p170-185.html
   My bibliography  Save this article

Novel formulations and modeling enhancements for the dynamic berth allocation problem

Author

Listed:
  • Kramer, Arthur
  • Lalla-Ruiz, Eduardo
  • Iori, Manuel
  • Voß, Stefan

Abstract

This paper addresses the well-known dynamic berth allocation problem (DBAP), which finds numerous applications at container terminals aiming to allocate and schedule incoming container vessels into berthing positions along the quay. Due to its impact on ports’ performance, having efficient DBAP formulations is of great importance, especially for determining optimal schedules in quick time as well as aiding managers and developers in the assessment of solution strategies and approximate approaches. In this work, we propose two novel formulations, a time-indexed formulation and an arc-flow one, to efficiently tackle the DBAP. Additionally, to improve computational performance, we propose problem-based modeling enhancements and a variable-fixing procedure that allows to discard some variables by considering their reduced costs. By means of these contributions, we improve the models’ performance for those instances where the optimal solutions were already known, and we solve to optimality for the first time other instances from the literature.

Suggested Citation

  • Kramer, Arthur & Lalla-Ruiz, Eduardo & Iori, Manuel & Voß, Stefan, 2019. "Novel formulations and modeling enhancements for the dynamic berth allocation problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 170-185.
  • Handle: RePEc:eee:ejores:v:278:y:2019:i:1:p:170-185
    DOI: 10.1016/j.ejor.2019.03.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719302942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.03.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valerio de Carvalho, J. M., 2002. "LP models for bin packing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 141(2), pages 253-273, September.
    2. Jean-François Cordeau & Gilbert Laporte & Pasquale Legato & Luigi Moccia, 2005. "Models and Tabu Search Heuristics for the Berth-Allocation Problem," Transportation Science, INFORMS, vol. 39(4), pages 526-538, November.
    3. Hyung Rim Choi & Hyun Soo Kim & Byung Joo Park & Nam-Kyu Park & Sang Wan Lee, 2003. "An ERP approach for container terminal operating systems," Maritime Policy & Management, Taylor & Francis Journals, vol. 30(3), pages 197-210, July.
    4. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    5. Kramer, Arthur & Dell’Amico, Mauro & Iori, Manuel, 2019. "Enhanced arc-flow formulations to minimize weighted completion time on identical parallel machines," European Journal of Operational Research, Elsevier, vol. 275(1), pages 67-79.
    6. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    7. Cordeau, Jean-Francois & Gaudioso, Manlio & Laporte, Gilbert & Moccia, Luigi, 2007. "The service allocation problem at the Gioia Tauro Maritime Terminal," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1167-1184, January.
    8. SOUSA, Jorge P. & WOLSEY, Laurence A., 1992. "A time indexed formulation of non-preemptive single machine scheduling problems," LIDAM Reprints CORE 984, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Theo E Notteboom, 2006. "The Time Factor in Liner Shipping Services," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 8(1), pages 19-39, March.
    10. Xu, Dongsheng & Li, Chung-Lun & Leung, Joseph Y.-T., 2012. "Berth allocation with time-dependent physical limitations on vessels," European Journal of Operational Research, Elsevier, vol. 216(1), pages 47-56.
    11. Matteo Fischetti & Michele Monaci, 2014. "Exploiting Erraticism in Search," Operations Research, INFORMS, vol. 62(1), pages 114-122, February.
    12. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2001. "The dynamic berth allocation problem for a container port," Transportation Research Part B: Methodological, Elsevier, vol. 35(4), pages 401-417, May.
    13. Agra, Agostinho & Oliveira, Maryse, 2018. "MIP approaches for the integrated berth allocation and quay crane assignment and scheduling problem," European Journal of Operational Research, Elsevier, vol. 264(1), pages 138-148.
    14. Imai, Akio & Yamakawa, Yukiko & Huang, Kuancheng, 2014. "The strategic berth template problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 77-100.
    15. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    16. Buhrkal, Katja & Zuglian, Sara & Ropke, Stefan & Larsen, Jesper & Lusby, Richard, 2011. "Models for the discrete berth allocation problem: A computational comparison," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(4), pages 461-473, July.
    17. Giallombardo, Giovanni & Moccia, Luigi & Salani, Matteo & Vacca, Ilaria, 2010. "Modeling and solving the Tactical Berth Allocation Problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 232-245, February.
    18. M. W. P. Savelsbergh, 1994. "Preprocessing and Probing Techniques for Mixed Integer Programming Problems," INFORMS Journal on Computing, INFORMS, vol. 6(4), pages 445-454, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
    2. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    3. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong & Sheng, Dian, 2021. "Short-term berth planning and ship scheduling for a busy seaport with channel restrictions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    4. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    5. Wu, Lingxiao & Jia, Shuai & Wang, Shuaian, 2020. "Pilotage planning in seaports," European Journal of Operational Research, Elsevier, vol. 287(1), pages 90-105.
    6. Guo, Liming & Zheng, Jianfeng & Liang, Jinpeng & Wang, Shuaian, 2023. "Column generation for the multi-port berth allocation problem with port cooperation stability," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 3-28.
    7. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo Lalla-Ruiz & Stefan Voß & Christopher Expósito-Izquierdo & Belén Melián-Batista & J. Marcos Moreno-Vega, 2017. "A POPMUSIC-based approach for the berth allocation problem under time-dependent limitations," Annals of Operations Research, Springer, vol. 253(2), pages 871-897, June.
    2. Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
    3. Fernández, Elena & Munoz-Marquez, Manuel, 2022. "New formulations and solutions for the strategic berth template problem," European Journal of Operational Research, Elsevier, vol. 298(1), pages 99-117.
    4. Xavier Schepler & Nabil Absi & Dominique Feillet & Eric Sanlaville, 2019. "The stochastic discrete berth allocation problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(4), pages 363-396, December.
    5. T. R. Lalita & G. S. R. Murthy, 2022. "Compact ILP formulations for a class of solutions to berth allocation and quay crane scheduling problems," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 413-439, March.
    6. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    7. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    8. Xiang, Xi & Liu, Changchun, 2021. "An expanded robust optimisation approach for the berth allocation problem considering uncertain operation time," Omega, Elsevier, vol. 103(C).
    9. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong & Sheng, Dian, 2021. "Short-term berth planning and ship scheduling for a busy seaport with channel restrictions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    10. Guo, Liming & Zheng, Jianfeng & Liang, Jinpeng & Wang, Shuaian, 2023. "Column generation for the multi-port berth allocation problem with port cooperation stability," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 3-28.
    11. Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
    12. Jin, Jian Gang & Lee, Der-Horng & Hu, Hao, 2015. "Tactical berth and yard template design at container transshipment terminals: A column generation based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 168-184.
    13. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    14. Robenek, Tomáš & Umang, Nitish & Bierlaire, Michel & Ropke, Stefan, 2014. "A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports," European Journal of Operational Research, Elsevier, vol. 235(2), pages 399-411.
    15. Sung Won Cho & Hyun Ji Park & Chulung Lee, 2021. "An integrated method for berth allocation and quay crane assignment to allow for reassignment of vessels to other terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 123-153, March.
    16. Wawrzyniak, Jakub & Drozdowski, Maciej & Sanlaville, Éric, 2020. "Selecting algorithms for large berth allocation problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 844-862.
    17. Iris, Çağatay & Pacino, Dario & Ropke, Stefan, 2017. "Improved formulations and an Adaptive Large Neighborhood Search heuristic for the integrated berth allocation and quay crane assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 123-147.
    18. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    19. Fanrui Xie & Tao Wu & Canrong Zhang, 2019. "A Branch-and-Price Algorithm for the Integrated Berth Allocation and Quay Crane Assignment Problem," Transportation Science, INFORMS, vol. 53(5), pages 1427-1454, September.
    20. Paul Corry & Christian Bierwirth, 2019. "The Berth Allocation Problem with Channel Restrictions," Transportation Science, INFORMS, vol. 53(3), pages 708-727, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:278:y:2019:i:1:p:170-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.