IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v216y2012i1p47-56.html
   My bibliography  Save this article

Berth allocation with time-dependent physical limitations on vessels

Author

Listed:
  • Xu, Dongsheng
  • Li, Chung-Lun
  • Leung, Joseph Y.-T.

Abstract

We consider a berth allocation problem in container terminals in which the assignment of vessels to berths is limited by water depth and tidal condition. We model the problem as a parallel-machine scheduling problem with inclusive processing set restrictions, where the time horizon is divided into two periods and the processing sets in these two periods are different. We consider both the static and dynamic cases of the problem. In the static case all of the vessels are ready for service at time zero, while in the dynamic case the vessels may have nonzero arrival times. We analyze the computational complexity and develop efficient heuristics for these two cases. Computational experiments are performed to test the effectiveness of the heuristics and to evaluate the benefits of taking tidal condition into consideration when making berth allocation decisions.

Suggested Citation

  • Xu, Dongsheng & Li, Chung-Lun & Leung, Joseph Y.-T., 2012. "Berth allocation with time-dependent physical limitations on vessels," European Journal of Operational Research, Elsevier, vol. 216(1), pages 47-56.
  • Handle: RePEc:eee:ejores:v:216:y:2012:i:1:p:47-56
    DOI: 10.1016/j.ejor.2011.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171100614X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Cheong & K. Tan & D. Liu & C. Lin, 2010. "Multi-objective and prioritized berth allocation in container ports," Annals of Operations Research, Springer, vol. 180(1), pages 63-103, November.
    2. Jam Dai & Wuqin Lin & Rajeeva Moorthy & Chung-Piaw Teo, 2008. "Berth Allocation Planning Optimization in Container Terminals," International Series in Operations Research & Management Science, in: Christopher S. Tang & Chung-Piaw Teo & Kwok-Kee Wei (ed.), Supply Chain Analysis, pages 69-104, Springer.
    3. Jean-François Cordeau & Gilbert Laporte & Pasquale Legato & Luigi Moccia, 2005. "Models and Tabu Search Heuristics for the Berth-Allocation Problem," Transportation Science, INFORMS, vol. 39(4), pages 526-538, November.
    4. Meisel, Frank & Bierwirth, Christian, 2009. "Heuristics for the integration of crane productivity in the berth allocation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 196-209, January.
    5. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2005. "Corrigendum to "The dynamic berth allocation problem for a container port" [Transportation Research Part B 35 (2001) 401-417]," Transportation Research Part B: Methodological, Elsevier, vol. 39(3), pages 197-197, March.
    6. Chengji Liang & Lin Lin & Jungbok Jo, 2009. "Multiobjective hybrid genetic algorithm for quay crane scheduling in berth allocation planning," International Journal of Manufacturing Technology and Management, Inderscience Enterprises Ltd, vol. 16(1/2), pages 127-146.
    7. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2008. "Berthing ships at a multi-user container terminal with a limited quay capacity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(1), pages 136-151, January.
    8. Nishimura, Etsuko & Imai, Akio & Papadimitriou, Stratos, 2001. "Berth allocation planning in the public berth system by genetic algorithms," European Journal of Operational Research, Elsevier, vol. 131(2), pages 282-292, June.
    9. Lee, Der-Horng & Chen, Jiang Hang & Cao, Jin Xin, 2010. "The continuous Berth Allocation Problem: A Greedy Randomized Adaptive Search Solution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 1017-1029, November.
    10. Hansen, Pierre & Mladenovic, Nenad & Moreno Pérez, Jos´e A., 2008. "Variable neighborhood search," European Journal of Operational Research, Elsevier, vol. 191(3), pages 593-595, December.
    11. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    12. Imai, Akio & Nishimura, Etsuko & Hattori, Masahiro & Papadimitriou, Stratos, 2007. "Berth allocation at indented berths for mega-containerships," European Journal of Operational Research, Elsevier, vol. 179(2), pages 579-593, June.
    13. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2003. "Berth allocation with service priority," Transportation Research Part B: Methodological, Elsevier, vol. 37(5), pages 437-457, June.
    14. Imai, Akio & Chen, Hsieh Chia & Nishimura, Etsuko & Papadimitriou, Stratos, 2008. "The simultaneous berth and quay crane allocation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 900-920, September.
    15. Imai, Akio & Sun, Xin & Nishimura, Etsuko & Papadimitriou, Stratos, 2005. "Berth allocation in a container port: using a continuous location space approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(3), pages 199-221, March.
    16. Leung, Joseph Y.-T. & Li, Chung-Lun, 2008. "Scheduling with processing set restrictions: A survey," International Journal of Production Economics, Elsevier, vol. 116(2), pages 251-262, December.
    17. Kim, Kap Hwan & Moon, Kyung Chan, 2003. "Berth scheduling by simulated annealing," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 541-560, July.
    18. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2001. "The dynamic berth allocation problem for a container port," Transportation Research Part B: Methodological, Elsevier, vol. 35(4), pages 401-417, May.
    19. Hansen, Pierre & Oguz, Ceyda & Mladenovic, Nenad, 2008. "Variable neighborhood search for minimum cost berth allocation," European Journal of Operational Research, Elsevier, vol. 191(3), pages 636-649, December.
    20. Akio Imai & Jin-Tao Zhang & Etsuko Nishimura & Stratos Papadimitriou, 2007. "The Berth Allocation Problem with Service Time and Delay Time Objectives," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 9(4), pages 269-290, December.
    21. J Blazewicz & T C E Cheng & M Machowiak & C Oguz, 2011. "Berth and quay crane allocation: a moldable task scheduling model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1189-1197, July.
    22. Buhrkal, Katja & Zuglian, Sara & Ropke, Stefan & Larsen, Jesper & Lusby, Richard, 2011. "Models for the discrete berth allocation problem: A computational comparison," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(4), pages 461-473, July.
    23. K T Park & K H Kim, 2002. "Berth scheduling for container terminals by using a sub-gradient optimization technique," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(9), pages 1054-1062, September.
    24. Lee, Yusin & Chen, Chuen-Yih, 2009. "An optimization heuristic for the berth scheduling problem," European Journal of Operational Research, Elsevier, vol. 196(2), pages 500-508, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Zhen & Ek Peng Chew & Loo Hay Lee, 2011. "An Integrated Model for Berth Template and Yard Template Planning in Transshipment Hubs," Transportation Science, INFORMS, vol. 45(4), pages 483-504, November.
    2. Shih-Wei Lin & Ching-Jung Ting & Kun-Chih Wu, 2018. "Simulated annealing with different vessel assignment strategies for the continuous berth allocation problem," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 740-763, December.
    3. Robenek, Tomáš & Umang, Nitish & Bierlaire, Michel & Ropke, Stefan, 2014. "A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports," European Journal of Operational Research, Elsevier, vol. 235(2), pages 399-411.
    4. Feng Li & Jiuh-Biing Sheu & Zi-You Gao, 2015. "Solving the Continuous Berth Allocation and Specific Quay Crane Assignment Problems with Quay Crane Coverage Range," Transportation Science, INFORMS, vol. 49(4), pages 968-989, November.
    5. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    6. Imai, Akio & Yamakawa, Yukiko & Huang, Kuancheng, 2014. "The strategic berth template problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 77-100.
    7. Umang, Nitish & Bierlaire, Michel & Vacca, Ilaria, 2013. "Exact and heuristic methods to solve the berth allocation problem in bulk ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 14-31.
    8. Shangyao Yan & Chung-Cheng Lu & Jun-Hsiao Hsieh & Han-Chun Lin, 2019. "A Dynamic and Flexible Berth Allocation Model with Stochastic Vessel Arrival Times," Networks and Spatial Economics, Springer, vol. 19(3), pages 903-927, September.
    9. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2013. "Marine container terminal configurations for efficient handling of mega-containerships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 141-158.
    10. Zhen, Lu, 2015. "Tactical berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 247(3), pages 928-944.
    11. Zhen, Lu & Lee, Loo Hay & Chew, Ek Peng, 2011. "A decision model for berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 212(1), pages 54-68, July.
    12. Fanrui Xie & Tao Wu & Canrong Zhang, 2019. "A Branch-and-Price Algorithm for the Integrated Berth Allocation and Quay Crane Assignment Problem," Transportation Science, INFORMS, vol. 53(5), pages 1427-1454, September.
    13. Changchun Liu & Xi Xiang & Li Zheng, 2017. "Two decision models for berth allocation problem under uncertainty considering service level," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 312-344, December.
    14. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    15. Changchun Liu & Xi Xiang & Canrong Zhang & Li Zheng, 2016. "A Decision Model for Berth Allocation Under Uncertainty Considering Service Level Using an Adaptive Differential Evolution Algorithm," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(06), pages 1-28, December.
    16. Lalla-Ruiz, Eduardo & Expósito-Izquierdo, Christopher & Melián-Batista, Belén & Moreno-Vega, J. Marcos, 2016. "A Set-Partitioning-based model for the Berth Allocation Problem under Time-Dependent Limitations," European Journal of Operational Research, Elsevier, vol. 250(3), pages 1001-1012.
    17. Changchun Liu & Xi Xiang & Li Zheng, 2020. "A two-stage robust optimization approach for the berth allocation problem under uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 425-452, June.
    18. Xiang, Xi & Liu, Changchun & Miao, Lixin, 2017. "A bi-objective robust model for berth allocation scheduling under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 294-319.
    19. Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
    20. Sung Won Cho & Hyun Ji Park & Chulung Lee, 2021. "An integrated method for berth allocation and quay crane assignment to allow for reassignment of vessels to other terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 123-153, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:216:y:2012:i:1:p:47-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.